Abstract
Introduction of the CBA/N X-linked gene into C3H mice has resulted in the establishment of a new strain of mice that has profound immunologic defects. B cells from these mice show significantly impaired in vitro immune responses to the T cell-independent type 1 antigen trinitrophenyl-Brucella abortus (TNP-BA) as well as markedly reduced proliferative responses to a number of B cell mitogens when compared with the responses of the parental control mice. The in vivo response of such mice to TNP-BA is, however, comparable to that of CBA/N mice. Furthermore, B cells from C3.CBA/N mice are unresponsive to the plaque- forming cell enhancing effects induced by EL4-derived supernatant in the presence of TNP-BA, unlike B cells obtained from CBA/N or C3H/Hen mice whose responsiveness to TNP-BA can be significantly enhanced in the presence of EL4-derived supernatant. The model we have presented to best explain these results suggests that B cells from C3.CBA/N mice can be stimulated only under conditions in which they can interact with carrier-specific T cell help and not under conditions where factor- dependent responses are dominant.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amsbaugh D. F., Hansen C. T., Prescott B., Stashak P. W., Barthold D. R., Baker P. J. Genetic control of the antibody response to type 3 pneumococcal polysaccharide in mice. I. Evidence that an X-linked gene plays a decisive role in determining responsiveness. J Exp Med. 1972 Oct 1;136(4):931–949. doi: 10.1084/jem.136.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bona C., Mond J. J., Paul W. E. Synergistic genetic defect in B-lymphocyte function. I. Defective responses to B-cell stimulants and their genetic basis. J Exp Med. 1980 Jan 1;151(1):224–234. doi: 10.1084/jem.151.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciorbaru R., Adam A., Petit J. F., Lederer E., Bona C., Chedid L. Isolation of mitogenic and adjuvant active fractions from various species of Nocardiae. Infect Immun. 1975 Feb;11(2):257–264. doi: 10.1128/iai.11.2.257-264.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrar J. J., Fuller-Farrar J., Simon P. L., Hilfiker M. L., Stadler B. M., Farrar W. L. Thymoma production of T cell growth factor (Interleukin 2). J Immunol. 1980 Dec;125(6):2555–2558. [PubMed] [Google Scholar]
- Finkelman F. D., Scher I., Mond J. J., Kung J. T., Metcalf E. S. Polyclonal activation of the murine immune system by an antibody to IgD. I. Increase in cell size and DNA synthesis. J Immunol. 1982 Aug;129(2):629–637. [PubMed] [Google Scholar]
- Greenstein J. L., Lord E., Kappler J. W., Marrack P. C. Analysis of the response of B cells from CBA/N-defective mice to nonspecific T cell help. J Exp Med. 1981 Nov 1;154(5):1608–1617. doi: 10.1084/jem.154.5.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inman J. K. Thymus-independent antigens: the preparation of covalent, hapten-ficoll conjugates. J Immunol. 1975 Feb;114(2 Pt 1):704–709. [PubMed] [Google Scholar]
- Mond J. J., Farrar J., Paul W. E., Fuller-Farrar J., Schaefer M., Howard M. T cell dependence and factor reconstitution of in vitro antibody responses to TNP-B. Abortus and TNP-Ficoll: restoration of depleted responses with chromatographed fractions of a T cell-derived factor. J Immunol. 1983 Aug;131(2):633–637. [PubMed] [Google Scholar]
- Mond J. J., Scher I., Cossman J., Kessler S., Mongini P. K., Hansen C., Finkelman F. D., Paul W. E. Role of the thymus in directing the development of a subset of B lymphocytes. J Exp Med. 1982 Mar 1;155(3):924–936. doi: 10.1084/jem.155.3.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mond J. J., Takahashi T., Thorbecke G. J. Thymus-derived cell (T cell) activation by heterologous antigens as a replacement of specific immune T cells in the transfer of the secondary response to sheep erythrocytes. J Exp Med. 1972 Oct 1;136(4):715–721. doi: 10.1084/jem.136.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mond J. J. Use of the T lymphocyte regulated type 2 antigens for the analysis of responsiveness of Lyb5+ and Lyb5- B lymphocytes to T lymphocyte derived factors. Immunol Rev. 1982;64:99–115. doi: 10.1111/j.1600-065x.1982.tb00420.x. [DOI] [PubMed] [Google Scholar]
- Mongini P. K., Stein K. E., Paul W. E. T cell regulation of IgG subclass antibody production in response to T-independent antigens. J Exp Med. 1981 Jan 1;153(1):1–12. doi: 10.1084/jem.153.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puré E., Vitetta E. Induction of murine B cell proliferation by insolubilized anti-immunoglobulins. J Immunol. 1980 Sep;125(3):1240–1242. [PubMed] [Google Scholar]
- Scher I. The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity. Adv Immunol. 1982;33:1–71. doi: 10.1016/s0065-2776(08)60834-2. [DOI] [PubMed] [Google Scholar]
- Sieckmann D. G., Scher I., Asofsky R., Mosier D. E., Paul W. E. Activation of mouse lymphocytes by anti-immunoglobulin. II. A thymus-independent response by a mature subset of B lymphocytes. J Exp Med. 1978 Dec 1;148(6):1628–1643. doi: 10.1084/jem.148.6.1628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yaffe L. J., Mond J. J., Ahmed A., Scher I. Analysis of the B cell subpopulations influenced by allogeneic effect factor. I. MHC restricted enhancement of b cell responses to thymic-independent antigens, types 1 and 2, in normal and CBA/N mice. J Immunol. 1983 Feb;130(2):632–636. [PubMed] [Google Scholar]