Abstract
We report investigation of the relationship between ligand-induced B cell plasma membrane depolarization and increased expression of membrane-associated, I-A subregion encoded (mI-A) antigens. Results demonstrate that equal frequencies of B cells are stimulated to undergo membrane depolarization and to increase mI-A expression in response to mitogen, anti-Ig, and thymus-independent (TI) or thymus-dependent (TD) antigens. Further, a cause-and-effect relationship between these two events is suggested by results that demonstrate that inhibition of anti- Fab--induced depolarization by valinomycin also inhibits the subsequent increase in mI-A antigen expression and "passive" (non-ligand-mediated) depolarization of murine B cells by K+ results in hyper-mI-A antigen expression. Based upon these results we hypothesize that antigen- mediated receptor cross-linking results in signal transduction via membrane depolarization, which is resultant in increased mI-A antigen synthesis and cell surface expression. This increase in mI-A antigen density may render the B cell more receptive to subsequent interaction with I-region-restricted helper T cells.
Full Text
The Full Text of this article is available as a PDF (889.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J., Melchers F. T cell-dependent activation of resting B cells: requirement for both nonspecific unrestricted and antigen-specific Ia-restricted soluble factors. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2497–2501. doi: 10.1073/pnas.78.4.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersson J., Schreier M. H., Melchers F. T-cell-dependent B-cell stimulation is H-2 restricted and antigen dependent only at the resting B-cell level. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1612–1616. doi: 10.1073/pnas.77.3.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Augustin A. A., Julius M. H., Cosenza H. Antigen-specific stimulation and trans-stimulation of T cells in long-term culture. Eur J Immunol. 1979 Sep;9(9):665–670. doi: 10.1002/eji.1830090903. [DOI] [PubMed] [Google Scholar]
- Bretscher P. A., Cohn M. Minimal model for the mechanism of antibody induction and paralysis by antigen. Nature. 1968 Nov 2;220(5166):444–448. doi: 10.1038/220444a0. [DOI] [PubMed] [Google Scholar]
- Cambier J. C., Monroe J. G., Neale M. J. Definition of conditions that enable antigen-specific activation of the majority of isolated trinitrophenol-binding B cells. J Exp Med. 1982 Dec 1;156(6):1635–1649. doi: 10.1084/jem.156.6.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cambier J. C., Neale M. J. Isolated phosphorylcholine binding lymphocytes. I. Use of a cleavable crosslinking reagent for solid-phase adsorbent isolation of functional antigen binding cells. J Immunol Methods. 1982 Jun 11;51(2):209–221. doi: 10.1016/0022-1759(82)90260-5. [DOI] [PubMed] [Google Scholar]
- Coffey R. G., Hadden E. M., Lopez C., Hadden J. W. cGMP and calcium in the initiation of cellular proliferation. Adv Cyclic Nucleotide Res. 1978;9:661–676. [PubMed] [Google Scholar]
- Cone C. D., Jr Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J Theor Biol. 1971 Jan;30(1):151–181. doi: 10.1016/0022-5193(71)90042-7. [DOI] [PubMed] [Google Scholar]
- Daniele R. P., Holian S. K. A potassium ionophore (valinomycin) inhibits lymphocyte proliferation by its effects on the cell membrane. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3599–3602. doi: 10.1073/pnas.73.10.3599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennert G., Hyman R., Lesley J., Trowbridge I. S. Effects of cytotoxic monoclonal antibody specific for T200 glycoprotein on functional lymphoid cell populations. Cell Immunol. 1980 Aug 1;53(2):350–364. doi: 10.1016/0008-8749(80)90335-4. [DOI] [PubMed] [Google Scholar]
- Elkins K., Cambier J. C. Constitutive production of a factor supporting B lymphocyte differentiation by a T cell hybridoma. J Immunol. 1983 Mar;130(3):1247–1251. [PubMed] [Google Scholar]
- Green N. M. Avidin. Adv Protein Chem. 1975;29:85–133. doi: 10.1016/s0065-3233(08)60411-8. [DOI] [PubMed] [Google Scholar]
- Jones B., Janeway C. A., Jr Cooperative interaction of B lymphocytes with antigen-specific helper T lymphocytes is MHC restricted. Nature. 1981 Aug 6;292(5823):547–549. doi: 10.1038/292547a0. [DOI] [PubMed] [Google Scholar]
- Kiefer H., Blume A. J., Kaback H. R. Membrane potential changes during mitogenic stimulation of mouse spleen lymphocytes. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2200–2204. doi: 10.1073/pnas.77.4.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meissner H. P., Schmelz H. Membrane potential of beta-cells in pancreatic islets. Pflugers Arch. 1974;351(3):195–206. doi: 10.1007/BF00586918. [DOI] [PubMed] [Google Scholar]
- Melchers F., Andersson J., Lernhardt W., Schreier M. H. Functional studies on receptor complexes of B-lymphocytes involved in regulation of growth and maturation. Biochem Soc Symp. 1980;45:75–88. [PubMed] [Google Scholar]
- Mond J. J., Seghal E., Kung J., Finkelman F. D. Increased expression of I-region-associated antigen (Ia) on B cells after cross-linking of surface immunoglobulin. J Immunol. 1981 Sep;127(3):881–888. [PubMed] [Google Scholar]
- Monroe J. G., Cambier J. C. B cell activation. I. Anti-immunoglobulin-induced receptor cross-linking results in a decrease in the plasma membrane potential of murine B lymphocytes. J Exp Med. 1983 Jun 1;157(6):2073–2086. doi: 10.1084/jem.157.6.2073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monroe J. G., Cambier J. C. Cell cycle dependence for expression of membrane associated IgD, IgM and Ia antigen on mitogen-stimulated murine B-lymphocytes. Ann N Y Acad Sci. 1982;399:238–254. doi: 10.1111/j.1749-6632.1982.tb25677.x. [DOI] [PubMed] [Google Scholar]
- Monroe J. G., Cambier J. C. Level of mIa expression on mitogen-stimulated murine B lymphocytes is dependent on position in cell cycle. J Immunol. 1983 Feb;130(2):626–631. [PubMed] [Google Scholar]
- Oi V. T., Jones P. P., Goding J. W., Herzenberg L. A., Herzenberg L. A. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol. 1978;81:115–120. doi: 10.1007/978-3-642-67448-8_18. [DOI] [PubMed] [Google Scholar]
- Palacios R., Martinez-Maza O., Guy K. Monoclonal antibodies against HLA-DR antigens replace T helper cells in activation of B lymphocytes. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3456–3460. doi: 10.1073/pnas.80.11.3456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Study R. E., Breakefield X. O., Bartfai T., Greengard P. Voltage-sensitive calcium channels regulate guanosine 3',5'-cyclic monophosphate levels in neuroblastoma cells. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6295–6299. doi: 10.1073/pnas.75.12.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taki M. Studies on blastogenesis of human lymphocytes by phytohemagglutinin, with special reference to changes of membrane potential during blastoid transformation. Mie Med J. 1970 Jan;19(3):245–262. [PubMed] [Google Scholar]
- Wakerley J. B., Lincoln D. W. The milk-ejection reflex of the rat: a 20- to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release. J Endocrinol. 1973 Jun;57(3):477–493. doi: 10.1677/joe.0.0570477. [DOI] [PubMed] [Google Scholar]
- Weinstein Y., Segal S., Melmon K. L. Specific mitogenic activity of 8-Br-guanosine 3',5'-monophosphate (Br-cyclic GMP) on B lymphocytes. J Immunol. 1975 Jul;115(1):112–117. [PubMed] [Google Scholar]