Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Nov 1;158(5):1654–1671. doi: 10.1084/jem.158.5.1654

Precursors of T cell growth factor producing cells in the thymus: ontogeny, frequency, and quantitative recovery in a subpopulation of phenotypically mature thymocytes defined by monoclonal antibody GK-1.5

PMCID: PMC2187144  PMID: 6195289

Abstract

In this report, the ontogeny of precursors of T cell growth factor (TCGF)-producing cells in the mouse thymus was investigated using a recently described limiting dilution microculture system. In agreement with previous studies, in the adult thymus TCGF production by cells stimulated by alloantigens was largely the property of the Lyt-2- negative subpopulation. Furthermore, when Lyt-2-negative cells were stained with monoclonal antibody GK-1.5 and sorted according to fluorescence intensity, all precursors of TCGF-producing cells were quantitatively recovered in the GK-1.5-positive subpopulation. During ontogeny, TCGF production by Lyt-2-negative thymocytes was first detectable on the 19th day of embryonic development at which time the precursor frequency was 1/10th that found in the adult thymus. As in the adult thymus, all precursors of TCGF-producing cells had the GK-1.5- positive, Lyt-2-negative phenotype. In parallel to these functional studies, the ontogeny of GK-1.5+, Lyt-2- cells was investigated. In the adult thymus, 80% of cells expressed both GK-1.5 and Lyt-2 antigens, whereas minor subpopulations of 10% and 5% (corresponding to phenotypically mature thymocytes as defined by cortisone-resistant thymocytes [CRT]) expressed GK-1.5 or Lyt-2 exclusively; 3% of cells expressed neither antigen. During ontogeny, thymocytes expressing both GK-1.5 and Lyt-2 first appeared on the 16th day of embryonic development and their proportion increased rapidly thereafter. Interestingly, the GK-1.5+, Lyt-2- subpopulation first appeared in significant numbers on day 19 in parallel with the appearance of functional TCGF activity. Taken together with our previous studies correlating cytolytic T lymphocyte precursor (CTL-P) activity with the Lyt-2+, GK-1.5- subpopulation, these results further emphasize the strict correlation between functional activity and mature surface phenotype of both embryonic and adult thymocytes.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ceredig R., Glasebrook A. L., MacDonald H. R. Phenotypic and functional properties of murine thymocytes. I. Precursors of cytolytic T lymphocytes and interleukin 2-producing cells are all contained within a subpopulation of "mature" thymocytes as analyzed by monoclonal antibodies and flow microfluorometry. J Exp Med. 1982 Feb 1;155(2):358–379. doi: 10.1084/jem.155.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ceredig R., MacDonald H. R., Jenkinson E. J. Flow microfluorometric analysis of mouse thymus development in vivo and in vitro. Eur J Immunol. 1983 Mar;13(3):185–190. doi: 10.1002/eji.1830130302. [DOI] [PubMed] [Google Scholar]
  3. Ceredig R., Sekaly R. P., MacDonald H. R. Differentiation in vitro of Lyt 2+ thymocytes from embryonic Lyt 2- precursors. Nature. 1983 May 19;303(5914):248–250. doi: 10.1038/303248a0. [DOI] [PubMed] [Google Scholar]
  4. Cerottini J. C., Engers H. D., Macdonald H. R., Brunner T. Generation of cytotoxic T lymphocytes in vitro. I. Response of normal and immune mouse spleen cells in mixed leukocyte cultures. J Exp Med. 1974 Sep 1;140(3):703–717. doi: 10.1084/jem.140.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Farrar J. J., Fuller-Farrar J., Simon P. L., Hilfiker M. L., Stadler B. M., Farrar W. L. Thymoma production of T cell growth factor (Interleukin 2). J Immunol. 1980 Dec;125(6):2555–2558. [PubMed] [Google Scholar]
  6. Kelso A., Macdonald H. R. Precursor frequency analysis of lymphokine-secreting alloreactive T lymphocytes. Dissociation of subsets producing interleukin 2, macrophage-activating factor, and granulocyte-macrophage colony-stimulating factor on the basis of Lyt-2 phenotype. J Exp Med. 1982 Nov 1;156(5):1366–1379. doi: 10.1084/jem.156.5.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ledbetter J. A., Evans R. L., Lipinski M., Cunningham-Rundles C., Good R. A., Herzenberg L. A. Evolutionary conservation of surface molecules that distinguish T lymphocyte helper/inducer and cytotoxic/suppressor subpopulations in mouse and man. J Exp Med. 1981 Feb 1;153(2):310–323. doi: 10.1084/jem.153.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maryanski J. L., MacDonald H. R., Sordat B., Cerottini J. C. Cell surface phenotype of cytolytic T lymphocyte precursors in aged nude mice. Eur J Immunol. 1981 Dec;11(12):968–972. doi: 10.1002/eji.1830111204. [DOI] [PubMed] [Google Scholar]
  9. Mathieson B. J., Sharrow S. O., Campbell P. S., Asofsky R. An Lyt differentiated thymocyte subpopulation detected by flow microfluorometry. Nature. 1979 Feb 8;277(5696):478–480. doi: 10.1038/277478a0. [DOI] [PubMed] [Google Scholar]
  10. Mathieson B. J., Sharrow S. O., Rosenberg Y., Hämmerling U. Lyt 1+23- cells appear in the thymus before Lyt 123+ cells. Nature. 1981 Jan 15;289(5794):179–181. doi: 10.1038/289179a0. [DOI] [PubMed] [Google Scholar]
  11. Miller J. F., Osoba D. Current concepts of the immunological function of the thymus. Physiol Rev. 1967 Jul;47(3):437–520. doi: 10.1152/physrev.1967.47.3.437. [DOI] [PubMed] [Google Scholar]
  12. Moore M. A., Owen J. J. Experimental studies on the development of the thymus. J Exp Med. 1967 Oct 1;126(4):715–726. doi: 10.1084/jem.126.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mosier D. E. Ontogeny of mouse lymphocyte function. I. Paradoxical elevation of reactivity to allogeneic cells and phytohemagglutinin in BALB-c fetal thymocytes. J Immunol. 1974 Jan;112(1):305–310. [PubMed] [Google Scholar]
  14. Reinherz E. L., Kung P. C., Goldstein G., Levey R. H., Schlossman S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1588–1592. doi: 10.1073/pnas.77.3.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reinherz E. L., Kung P. C., Goldstein G., Schlossman S. F. Separation of functional subsets of human T cells by a monoclonal antibody. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4061–4065. doi: 10.1073/pnas.76.8.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rothenberg E. A specific biosynthetic marker for immature thymic lymphoblasts. Active synthesis of thymus-leukemia antigen restricted to proliferating cells. J Exp Med. 1982 Jan 1;155(1):140–154. doi: 10.1084/jem.155.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Scollay R., Jacobs S., Jerabek L., Butcher E., Weissman I. T cell maturation: thymocyte and thymus migrant subpopulations defined with monoclonal antibodies to MHC region antigens. J Immunol. 1980 Jun;124(6):2845–2853. [PubMed] [Google Scholar]
  18. Smith K. A. T-cell growth factor. Immunol Rev. 1980;51:337–357. doi: 10.1111/j.1600-065x.1980.tb00327.x. [DOI] [PubMed] [Google Scholar]
  19. Terhorst C., van Agthoven A., Reinherz E., Schlossman S. Biochemical analysis of human T lymphocyte differentiation antigens T4 and T5. Science. 1980 Jul 25;209(4455):520–521. doi: 10.1126/science.6967228. [DOI] [PubMed] [Google Scholar]
  20. Widmer M. B., MacDonald H. R., Cerottini J. C. Limiting dilution analysis of alloantigen-reactive T lymphocytes. VI. Ontogeny of cytolytic T lymphocyte precursors in the thymus. Thymus. 1981 Feb;2(4-5):245–255. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES