Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Nov 1;158(5):1739–1744. doi: 10.1084/jem.158.5.1739

Covalent attachment of soluble proteins by nonenzymatically glycosylated collagen. Role in the in situ formation of immune complexes

PMCID: PMC2187146  PMID: 6415211

Abstract

The chronic tissue damage associated with long-term diabetes mellitus may arise in part from in situ immune complex formation by accumulated immunoglobulins and/or antigens bound to long-lived structural proteins that have undergone excessive nonenzymatic glycosylation. In this report, we have tested this hypothesis using nonenzymatically glycosylated collagen. Binding of both albumin and IgG averaged four times the amount bound to unmodified collagen. Both albumin and IgG (anti-BSA) bound to nonenzymatically glycosylated collagen retained their ability to form immune complexes in situ with free antibody and antigen.

Full Text

The Full Text of this article is available as a PDF (459.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Brownlee M., Cerami A. The biochemistry of the complications of diabetes mellitus. Annu Rev Biochem. 1981;50:385–432. doi: 10.1146/annurev.bi.50.070181.002125. [DOI] [PubMed] [Google Scholar]
  3. Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation reduces the susceptibility of fibrin to degradation by plasmin. Diabetes. 1983 Jul;32(7):680–684. doi: 10.2337/diab.32.7.680. [DOI] [PubMed] [Google Scholar]
  4. Cohen M. P., Urdanivia E., Surma M., Wu V. Y. Increased glycosylation of glomerular basement membrane collagen in diabetes. Biochem Biophys Res Commun. 1980 Jul 31;95(2):765–769. doi: 10.1016/0006-291x(80)90852-9. [DOI] [PubMed] [Google Scholar]
  5. Couser W. G., Salant D. J. In situ immune complex formation and glomerular injury. Kidney Int. 1980 Jan;17(1):1–13. doi: 10.1038/ki.1980.1. [DOI] [PubMed] [Google Scholar]
  6. Falk R. J., Scheinman J. I., Mauer S. M., Michael A. F. Polyantigenic expansion of basement membrane constituents in diabetic nephropathy. Diabetes. 1983 May;32 (Suppl 2):34–39. doi: 10.2337/diab.32.2.s34. [DOI] [PubMed] [Google Scholar]
  7. Fietzek P. P., Kühn K. The primary structure of collagen. Int Rev Connect Tissue Res. 1976;7:1–60. doi: 10.1016/b978-0-12-363707-9.50007-1. [DOI] [PubMed] [Google Scholar]
  8. Fleuren G., Grond J., Hoedemaeker P. J. In situ formation of subepithelial glomerular immune complexes in passive serum sickness. Kidney Int. 1980 May;17(5):631–637. doi: 10.1038/ki.1980.74. [DOI] [PubMed] [Google Scholar]
  9. Golbus S. M., Wilson C. B. Experimental glomerulonephritis induced by in situ formation of immune complexes in glomerular capillary wall. Kidney Int. 1979 Aug;16(2):148–157. doi: 10.1038/ki.1979.116. [DOI] [PubMed] [Google Scholar]
  10. MOORE S., STEIN W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954 Dec;211(2):907–913. [PubMed] [Google Scholar]
  11. Mauer S. M., Steffes M. W., Michael A. F., Brown D. M. Studies of diabetic nephropathy in animals and man. Diabetes. 1976;25(2 Suppl):850–857. [PubMed] [Google Scholar]
  12. Michael A. F., Brown D. M. Increased concentration of albumin in kidney basement membranes in diabetes mellitus. Diabetes. 1981 Oct;30(10):843–846. doi: 10.2337/diab.30.10.843. [DOI] [PubMed] [Google Scholar]
  13. Miller K., Michael A. F. Immunopathology of renal extracellular membranes in diabetes mellitus. Specificity of tubular basement-membrane immunofluorescence. Diabetes. 1976 Aug;25(8):701–708. doi: 10.2337/diab.25.8.701. [DOI] [PubMed] [Google Scholar]
  14. Moscatelli D., Jaffe E., Rifkin D. B. Tetradecanoyl phorbol acetate stimulates latent collagenase production by cultured human endothelial cells. Cell. 1980 Jun;20(2):343–351. doi: 10.1016/0092-8674(80)90620-0. [DOI] [PubMed] [Google Scholar]
  15. REYNOLDS T. M. CHEMISTRY OF NONENZYMIC BROWNING. I. THE REACTION BETWEEN ALDOSES AND AMINES. Adv Food Res. 1963;12:1–52. doi: 10.1016/s0065-2628(08)60005-1. [DOI] [PubMed] [Google Scholar]
  16. Reynolds T. M. Chemistry of nonenzymic browning. II. Adv Food Res. 1965;14:167–283. doi: 10.1016/s0065-2628(08)60149-4. [DOI] [PubMed] [Google Scholar]
  17. Rosenberg H., Modrak J. B., Hassing J. M., Al-Turk W. A., Stohs S. J. Glycosylated collagen. Biochem Biophys Res Commun. 1979 Nov 28;91(2):498–501. doi: 10.1016/0006-291x(79)91549-3. [DOI] [PubMed] [Google Scholar]
  18. Stevens V. J., Rouzer C. A., Monnier V. M., Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2918–2922. doi: 10.1073/pnas.75.6.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vlassara H., Brownlee M., Cerami A. Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5190–5192. doi: 10.1073/pnas.78.8.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yue D. K., McLennan S., Turtle J. R. Non-enzymatic glycosylation of tissue protein in diabetes in the rat. Diabetologia. 1983 May;24(5):377–381. doi: 10.1007/BF00251828. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES