Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Dec 1;158(6):2177–2182. doi: 10.1084/jem.158.6.2177

Detection of the complement fragment C5a in inflammatory exudates from the rabbit peritoneal cavity using radioimmunoassay

PMCID: PMC2187170  PMID: 6644242

Abstract

We describe a radioimmunoassay for rabbit C5a and its use to obtain evidence of extravascular C5a generation in two inflammatory reactions in the peritoneal cavity. These observations, together with the potent activity of C5a in inducing increased microvascular permeability involving circulating PMN leukocytes, strengthen the case for considering C5a an important inflammatory mediator. These findings offer an explanation for the many different experimental inflammatory reactions where oedema formation can be suppressed either by systemic depletion of complement or by depletion of circulating PMN leukocytes.

Full Text

The Full Text of this article is available as a PDF (561.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fantone J. C., Kunkel S. L., Ward P. A. Chemotactic mediators in neutrophil-dependent lung injury. Annu Rev Physiol. 1982;44:283–293. doi: 10.1146/annurev.ph.44.030182.001435. [DOI] [PubMed] [Google Scholar]
  2. Fernandez H. N., Hugli T. E. Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin. Polypeptide sequence determination and assignment of the oligosaccharide attachment site in C5a. J Biol Chem. 1978 Oct 10;253(19):6955–6964. [PubMed] [Google Scholar]
  3. Johnson A. R., Hugli T. E., Müller-Eberhard H. J. Release of histamine from rat mast cells by the complement peptides C3a and C5a. Immunology. 1975 Jun;28(6):1067–1080. [PMC free article] [PubMed] [Google Scholar]
  4. Orr F. W., Varani J., Kreutzer D. L., Senior R. M., Ward P. A. Digestion of the fifth component of complement by leukocyte enzymes. Sequential generation of chemotactic activities for leukocytes and for tumor cells. Am J Pathol. 1979 Jan;94(1):75–83. [PMC free article] [PubMed] [Google Scholar]
  5. Ward P. A., Hill J. H. Biologic role of complement products. Complement-derived leukotactic activity extractable from lesions of immunologic vasculitis. J Immunol. 1972 May;108(5):1137–1145. [PubMed] [Google Scholar]
  6. Wedmore C. V., Williams T. J. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature. 1981 Feb 19;289(5799):646–650. doi: 10.1038/289646a0. [DOI] [PubMed] [Google Scholar]
  7. Williams T. J., Jose P. J. Mediation of increased vascular permeability after complement activation. Histamine-independent action of rabbit C5a. J Exp Med. 1981 Jan 1;153(1):136–153. doi: 10.1084/jem.153.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Williams T. J., Peck M. J. Role of prostaglandin-mediated vasodilatation in inflammation. Nature. 1977 Dec 8;270(5637):530–532. doi: 10.1038/270530a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES