Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Jan 1;159(1):57–67. doi: 10.1084/jem.159.1.57

A reexamination of the role of LYT-2-positive T cells in murine skin graft rejection

PMCID: PMC2187200  PMID: 6198428

Abstract

We have investigated which T cell subclass defined by cytolysis with monoclonal anti-Lyt-1.2 and anti-Lyt-2.2 antibodies is required to adoptively transfer the ability to reject skin grafts. B6.Thy-1.1 spleen cells immune to graft antigens were fractionated with antibody plus C' and transferred to adult thymectomized, irradiated, bone marrow- reconstituted (ATXBM) B6.Thy-1.2 hosts that were simultaneously grafted with BALB.B skin. We found that when the ATXBM hosts were used 6 wk after irradiation and marrow reconstitution, both Lyt-1-depleted and Lyt-2-depleted immune spleen cells could transfer the ability to promptly reject skin grafts. However, such ATXBM recipients of Lyt-2- depleted cells that had rejected skin grafts were found to contain graft-specific CTL that were largely of host (B6.Thy-1.2) origin. When ATXBM hosts were used for the experiment 1 wk after irradiation and marrow reconstitution, no host-derived graft-specific CTL could be detected. However, graft rejection occurred in recipients of anti-Lyt-1- or anti-Lyt-2 plus C'-treated immune cells and specific CTL were generated from spleen cells of both groups. Thus, in the absence of a host-derived response, adoptively transferred immune Lyt-2+ cells, either resistant to, or that escaped from, antibody plus C' treatment, are able to expand in response to the antigenic stimulus provided by the graft. A more complete elimination of specific T cell subclasses is therefore needed to assess the relative contribution of a particular subset to the graft rejection process.

Full Text

The Full Text of this article is available as a PDF (809.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando I. Self-MHC-restricted cytotoxic T-cell response without thymic influence. Nature. 1981 Feb 5;289(5797):494–495. doi: 10.1038/289494a0. [DOI] [PubMed] [Google Scholar]
  2. Dallman M. J., Mason D. W., Webb M. The roles of host and donor cells in the rejection of skin allografts by T cell-deprived rats injected with syngeneic T cells. Eur J Immunol. 1982 Jun;12(6):511–518. doi: 10.1002/eji.1830120612. [DOI] [PubMed] [Google Scholar]
  3. Dennert G., Hyman R., Lesley J., Trowbridge I. S. Effects of cytotoxic monoclonal antibody specific for T200 glycoprotein on functional lymphoid cell populations. Cell Immunol. 1980 Aug 1;53(2):350–364. doi: 10.1016/0008-8749(80)90335-4. [DOI] [PubMed] [Google Scholar]
  4. Duprez V., Hamilton B., Burakoff S. J. Generation of cytolytic T lymphocytes in thymectomized, irradiated, and bone marrow-reconstituted mice. J Exp Med. 1982 Sep 1;156(3):844–859. doi: 10.1084/jem.156.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  6. Gillis S., Union N. A., Baker P. E., Smith K. A. The in vitro generation and sustained culture of nude mouse cytolytic T-lymphocytes. J Exp Med. 1979 Jun 1;149(6):1460–1476. doi: 10.1084/jem.149.6.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Howard J. C., Butcher G. W. The mechanism of graft rejection and the concept of antigenic strength. Scand J Immunol. 1981 Dec;14(6):687–691. doi: 10.1111/j.1365-3083.1981.tb00611.x. [DOI] [PubMed] [Google Scholar]
  8. Hünig T., Bevan M. J. Specificity of cytotoxic T cells from athymic mice. J Exp Med. 1980 Sep 1;152(3):688–702. doi: 10.1084/jem.152.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jooste S. V., Colvin R. B., Soper W. D., Winn H. J. The vascular bed as the primary target in the destruction of skin grafts by antiserum. I. Resistance of freshly placed xenografts of skin to antiserum. J Exp Med. 1981 Nov 1;154(5):1319–1331. doi: 10.1084/jem.154.5.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kelso A., Glasebrook A. L., Kanagawa O., Brunner K. T. Production of macrophage-activating factor by T lymphocyte clones and correlation with other lymphokine activities. J Immunol. 1982 Aug;129(2):550–556. [PubMed] [Google Scholar]
  11. Klein J. R., Raulet D. H., Pasternack M. S., Bevan M. J. Cytotoxic T lymphocytes produce immune interferon in response to antigen or mitogen. J Exp Med. 1982 Apr 1;155(4):1198–1203. doi: 10.1084/jem.155.4.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lafferty K. J., Prowse S. J., Simeonovic C. J., Warren H. S. Immunobiology of tissue transplantation: a return to the passenger leukocyte concept. Annu Rev Immunol. 1983;1:143–173. doi: 10.1146/annurev.iy.01.040183.001043. [DOI] [PubMed] [Google Scholar]
  13. Loveland B. E., Hogarth P. M., Ceredig R., McKenzie I. F. Cells mediating graft rejection in the mouse. I. Lyt-1 cells mediate skin graft rejection. J Exp Med. 1981 May 1;153(5):1044–1057. doi: 10.1084/jem.153.5.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loveland B. E., McKenzie I. F. Cells mediating graft rejection in the mouse. III. Ly-1+ precursor T cells generate skin graft rejection. Transplantation. 1982 Apr;33(4):407–410. doi: 10.1097/00007890-198204000-00013. [DOI] [PubMed] [Google Scholar]
  15. Loveland B. E., McKenzie I. F. Which T cells cause graft rejection? Transplantation. 1982 Mar;33(3):217–221. doi: 10.1097/00007890-198203000-00001. [DOI] [PubMed] [Google Scholar]
  16. Loveland B., Ceredig R., Hogarth M., McKenzie I. The key role of Lyt-1+ cells in skin graft rejection in the mouse. Transplant Proc. 1981 Mar;13(1 Pt 2):1079–1081. [PubMed] [Google Scholar]
  17. Marshak-Rothstein A., Fink P., Gridley T., Raulet D. H., Bevan M. J., Gefter M. L. Properties and applications of monoclonal antibodies directed against determinants of the Thy-1 locus. J Immunol. 1979 Jun;122(6):2491–2497. [PubMed] [Google Scholar]
  18. Maryanski J. L., MacDonald H. R., Sordat B., Cerottini J. C. Cell surface phenotype of cytolytic T lymphocyte precursors in aged nude mice. Eur J Immunol. 1981 Dec;11(12):968–972. doi: 10.1002/eji.1830111204. [DOI] [PubMed] [Google Scholar]
  19. Morris A. G., Lin Y. L., Askonas B. A. Immune interferon release when a cloned cytotoxic T-cell line meets its correct influenza-infected target cell. Nature. 1982 Jan 14;295(5845):150–152. doi: 10.1038/295150a0. [DOI] [PubMed] [Google Scholar]
  20. Pace J. L., Russell S. W., Schreiber R. D., Altman A., Katz D. H. Macrophage activation: priming activity from a T-cell hybridoma is attributable to interferon-gamma. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3782–3786. doi: 10.1073/pnas.80.12.3782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pace J. L., Russell S. W., Torres B. A., Johnson H. M., Gray P. W. Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol. 1983 May;130(5):2011–2013. [PubMed] [Google Scholar]
  22. Renkonen R., Soots A., von Willebrand E., Häyry P. Lymphoid cell subclasses in rejecting renal allograft in the rat. Cell Immunol. 1983 Apr 1;77(1):187–195. doi: 10.1016/0008-8749(83)90018-7. [DOI] [PubMed] [Google Scholar]
  23. Ryser J. E., Cerottini J. C., Brunner K. T. Generation of cytolytic T lymphocytes in vitro. IX. induction of secondary CTL responses in primary long-term MLC by supernatants from secondary MLC. J Immunol. 1978 Feb;120(2):370–377. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES