Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Apr 1;159(4):1132–1148. doi: 10.1084/jem.159.4.1132

Natural resistance of lethally irradiated F1 hybrid mice to parental marrow grafts is a function of H-2/Hh-restricted effectors

PMCID: PMC2187270  PMID: 6368735

Abstract

The natural resistance of F1 hybrid mice against parental bone marrow grafts is thought to be mediated by natural killer (NK)-like effector cells. However, unlike the NK cell activity against a wide range of tumors and normal cells, hybrid resistance is characterized by the immunogenetic specificity controlled by a set of unique noncodominant genes denoted as Hh. Two alternative hypotheses can account for the specificity. Thus, the specificity may reflect either the Hh restriction of effectors or the Hh gene control of mechanisms regulating non-Hh-restricted effector activity. In this study, therefore, we tested the recognition specificity of putative effectors mediating hybrid resistance in lethally irradiated H-2b/d and H-2b/k F1 hybrid mice to the engraftment of parental H-2b bone marrow. As a direct means of defining the effector specificity, rejection of parental bone marrow grafts was subjected to competitive inhibition in situ by irradiated tumor cells. Of the 16 independent lines of lymphoma and other hemopoietic tumor cells tested, the ability to inhibit hybrid resistance was the exclusive property of all tumors derived from mice homozygous for the H-2Db region, regardless of whether the tumor cells were susceptible or resistant to NK cell-mediated cytotoxicity in vitro. Four cell lines heterozygous for the H-2Db were noninhibitory, including one that is susceptible to natural killing. Pretreatment of the F1 hosts with an interferon inducer augmented the resistance with no alteration in the recognition specificity of effector cells. Therefore, natural resistance to parental H-2b bone marrow grafts was mediated by effectors restricted by the H-2Db/Hh-1b gene(s), and not by the nonrestricted NK cells detectable in conventional in vitro assays.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. Prevention of marrow allograft rejection with radioactive strontium: evidence for marrow-dependent effector cells. J Immunol. 1973 Feb;110(2):510–516. [PubMed] [Google Scholar]
  2. Binz H., Fenner M., Frei D., Wigzell H. Two independent receptors allow selective target lysis by T cell clones. J Exp Med. 1983 Apr 1;157(4):1252–1260. doi: 10.1084/jem.157.4.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brooks C. G. Reversible induction of natural killer cell activity in cloned murine cytotoxic T lymphocytes. Nature. 1983 Sep 8;305(5930):155–158. doi: 10.1038/305155a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CUDKOWICZ G., STIMPFLING J. H. DEFICIENT GROWTH OF C57BL MARROW CELLS TRANSPLANTED IN F1 HYBRID MICE. ASSOCIATION WITH THE HISTOCOMPATIBILITY-2 LOCUS. Immunology. 1964 May;7:291–306. [PMC free article] [PubMed] [Google Scholar]
  5. Campanile F., Crino L., Bonmassar E., Houchens D., Goldin A. Radioresistant inhibition of lymphoma growth in congenitally athymic (nude) mice. Cancer Res. 1977 Feb;37(2):394–398. [PubMed] [Google Scholar]
  6. Cerottini J. C., Brunner K. T., Lindahl P., Gresser I. Inhibitory effect of interferon preparations and inducers on the multiplication of transplanted allogeneic spleen cells and syngeneic bone marrow cells. Nat New Biol. 1973 Apr 4;242(118):152–153. doi: 10.1038/newbio242152a0. [DOI] [PubMed] [Google Scholar]
  7. Clark E. A., Harmon R. C. Genetic control of natural cytotoxicity and hybrid resistance. Adv Cancer Res. 1980;31:227–285. doi: 10.1016/s0065-230x(08)60659-4. [DOI] [PubMed] [Google Scholar]
  8. Cudkowicz G., Bennett M. Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice. J Exp Med. 1971 Jul 1;134(1):83–102. doi: 10.1084/jem.134.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cudkowicz G., Bennett M. Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J Exp Med. 1971 Dec 1;134(6):1513–1528. doi: 10.1084/jem.134.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cudkowicz G., Nakamura I. Genetics of the murine hemopoietic-histocompatibility system: an overview. Transplant Proc. 1983 Dec;15(4):2058–2063. [PubMed] [Google Scholar]
  11. Dexter T. M., Allen T. D., Scott D., Teich N. M. Isolation and characterisation of a bipotential haematopoietic cell line. Nature. 1979 Feb 8;277(5696):471–474. doi: 10.1038/277471a0. [DOI] [PubMed] [Google Scholar]
  12. Dexter T. M., Scott D., Teich N. M. Infection of bone marrow cells in vitro with FLV: effects on stem cell proliferation, differentiation and leukemogenic capacity. Cell. 1977 Oct;12(2):355–364. doi: 10.1016/0092-8674(77)90111-8. [DOI] [PubMed] [Google Scholar]
  13. Gidlund M., Orn A., Wigzell H., Senik A., Gresser I. Enhanced NK cell activity in mice injected with interferon and interferon inducers. Nature. 1978 Jun 29;273(5665):759–761. doi: 10.1038/273759a0. [DOI] [PubMed] [Google Scholar]
  14. HUGHES W. L., COMMERFORD S. L., GITLIN D., KRUEGER R. C., SCHULTZE B., SHAH V., REILLY P. DEOXYRIBONUCLEIC ACID METABOLISM IN VIVO: I. CELL PROLIFERATION AND DEATH AS MEASURED BY INCORPORATION AND ELIMINATION OF IODODEOXYURIDINE. Fed Proc. 1964 May-Jun;23:640–648. [PubMed] [Google Scholar]
  15. Hansson M., Beran M., Andersson B., Kiessling R. Inhibition of in vitro granulopoiesis by autologous allogeneic human NK cells. J Immunol. 1982 Jul;129(1):126–132. [PubMed] [Google Scholar]
  16. Iorio A. M., Neri M., Enrico P., Bonmassar E. Inhibition of hybrid resistance to lymphomas by inactivated tumor cells in lethally irradiated mice. Transplantation. 1981 Nov;32(5):355–362. doi: 10.1097/00007890-198111000-00003. [DOI] [PubMed] [Google Scholar]
  17. Kiessling R., Hochman P. S., Haller O., Shearer G. M., Wigzell H., Cudkowicz G. Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts. Eur J Immunol. 1977 Sep;7(9):655–663. doi: 10.1002/eji.1830070915. [DOI] [PubMed] [Google Scholar]
  18. Kumar V., Luevano E., Bennett M. Hybrid resistance to EL-4 lymphoma cells. I. Characterization of natural killer cells that lyse EL-4 cells and their distinction from marrow-dependent natural killer cells. J Exp Med. 1979 Sep 19;150(3):531–547. doi: 10.1084/jem.150.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lotzová E., Savary C. A., Pollack S. B. Prevention of rejection of allogeneic bone marrow transplants by NK 1.1 antiserum. Transplantation. 1983 May;35(5):490–494. doi: 10.1097/00007890-198305000-00019. [DOI] [PubMed] [Google Scholar]
  20. Miller S. C. Genetic resistance to transplantation of xenogeneic bone marrow in mice of various strains: influence of an interferon inducer and age. Scand J Immunol. 1981 Nov;14(5):515–522. [PubMed] [Google Scholar]
  21. Nakano K., Nakamura I., Cudkowicz G. Generation of F1 hybrid cytotoxic T lymphocytes specific for self H-2. Nature. 1981 Feb 12;289(5798):559–563. doi: 10.1038/289559a0. [DOI] [PubMed] [Google Scholar]
  22. Nunn M. E., Herberman R. B., Holden H. T. Natural cell-mediated cytotoxicity in mice against non-lymphoid tumor cells and some normal cells. Int J Cancer. 1977 Sep 15;20(3):381–387. doi: 10.1002/ijc.2910200309. [DOI] [PubMed] [Google Scholar]
  23. O'Brien T., Kendra J., Stephens H., Knight R., Barrett A. J. Recognition and regulation of progenitor marrow elements by NK cells in the mouse. Immunology. 1983 Aug;49(4):717–725. [PMC free article] [PubMed] [Google Scholar]
  24. Oehler J. R., Lindsay L. R., Nunn M. E., Holden H. T., Herberman R. B. Natural cell-mediated cytotoxicity in rats. II. In vivo augmentation of NK-cell activity. Int J Cancer. 1978 Feb 15;21(2):210–220. doi: 10.1002/ijc.2910210213. [DOI] [PubMed] [Google Scholar]
  25. Oth D., Donner M., Burg C. Measurement of the antitumoral immune reactions against a strain-specific chemically-induced sarcoma in syngeneic and F1 hybrid mice. Eur J Cancer. 1971 Oct;7(5):479–482. doi: 10.1016/0014-2964(71)90048-x. [DOI] [PubMed] [Google Scholar]
  26. POPP R. A. Regression of grafted bone marrow in homologous irradiated mouse chimeras. J Natl Cancer Inst. 1961 Mar;26:629–640. [PubMed] [Google Scholar]
  27. Rapaport F. T., Ozaki A., Cannon F. D., Mollen M., Blumenstock D., Ayvazian J. H., Ferrebee J. W. Parameters of allogeneic unresponsiveness in canine radiation chimerae, with particular reference to the possible existence of three closely linked genetic systems relevant to bone marrow transplantation. Transplant Proc. 1973 Mar;5(1):845–852. [PubMed] [Google Scholar]
  28. Reynolds C. W., Timonen T. T., Holden H. T., Hansen C. T., Herberman R. B. Natural killer cell activity in the rat. Analysis of effector cell morphology and effects of interferon on natural killer cell function in the athymic (nude) rat. Eur J Immunol. 1982 Jul;12(7):577–582. doi: 10.1002/eji.1830120709. [DOI] [PubMed] [Google Scholar]
  29. SNELL G. D., JACKSON R. B. Histocompatibility genes of the mouse. II. Production and analysis of isogenic resistant lines. J Natl Cancer Inst. 1958 Nov;21(5):843–877. [PubMed] [Google Scholar]
  30. Sanford B. H. Evidence for immunological resistance to a parental line tumor by F. hybrid hosts. Transplantation. 1967 May;5(3):557–560. [PubMed] [Google Scholar]
  31. Santoli D., Trinchieri G., Zmijewski C. M., Koprowski H. HLA-related control of spontaneous and antibody-dependent cell-mediated cytotoxic activity in humans. J Immunol. 1976 Sep;117(3):765–770. [PubMed] [Google Scholar]
  32. Snell G. D. Recognition structures determined by the H-2 complex. Transplant Proc. 1976 Jun;8(2):147–156. [PubMed] [Google Scholar]
  33. Storb R., Thomas E. D., Weiden P. L., Buckner C. D., Clift R. A., Fefer A., Goodell B. W., Johnson F. L., Neiman P. E., Sanders J. E. One-hundred-ten patients with aplastic anemia (AA) treated by marrow transplantation in Seattle. Transplant Proc. 1978 Mar;10(1):135–140. [PubMed] [Google Scholar]
  34. Trinchieri G., Santoli D. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med. 1978 May 1;147(5):1314–1333. doi: 10.1084/jem.147.5.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vodinelich L., Sutherland R., Schneider C., Newman R., Greaves M. Receptor for transferrin may be a "target" structure for natural killer cells. Proc Natl Acad Sci U S A. 1983 Feb;80(3):835–839. doi: 10.1073/pnas.80.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vriesendorp H. M., Zurcher C., van Bekkum D. W. Engraftment of allogeneic dog bone marrow. Transplant Proc. 1975 Dec;7(4):465–468. [PubMed] [Google Scholar]
  37. Walker M. C., Phillips-Quagliata J. M. Hybrid resistance to BALB/c plasmacytomas. II. Radiation sensitivity and silica insensitivity of resistance to MPC-11. J Immunol. 1979 Apr;122(4):1544–1547. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES