Abstract
Irradiated (H-2b X H-2k)F1 and (H-2b X H-2d)F1 recipients strongly resist the growth of H-2b parental bone marrow cells and do not resist marrow grafts from non-H-2b parents such as C3H and BALB/c. This phenomenon of hybrid resistance has been shown to be under genetic control of the H-2D-linked loci and was interpreted by Cudkowicz (9) as due to the existence of H-2D-linked recessive hemopoietic histocompatibility genes. To check whether the H-2D-linked loci are solely responsible for the fate of bone marrow allografts, we measured the strength of resistance of irradiated (B6 X C3H)F1 and (B6 X BALB/c)F1 recipients toward bone marrow grafts from a set of H-2 recombinant and F1 hybrid donors carrying either the H-2b, H-2d, and H- 2k alleles. We found that growth of all H-2b grafts was resisted, although to different degrees. Resistance was minimal when donors shared with the input strain of a corresponding F1 hybrid the H-2K and H-2I regions, or when both F1 donors and F1 recipients formed identical unique hybrid Ia molecules. In addition, H-2b grafts were resisted by congenic, H-2D-identical, H-2K-and H-2I-incompatible recipients. The fate of grafts from H-2Dd donors seemed to depend on the incompatibility of the combinatorial determinant Ia.22. If both donor and recipient expressed such a determinant (either in the cis or in the transposition), or if neither could form such a determinant, grafts were not resisted. The H-2Dk allele is not the main or only factor that confers on the C3H parental bone marrow cells the ability to grow unresisted in (B6 X C3H)F1 recipients. Grafts from congenic C3H.OH donors, carrying the same H-2Dk alleles and differing in the left part of the H-2 complex, were resisted by the F1 recipients. We conclude that both class I (K and D) and class II (I-A and I-E) major histocompatibility complex genes, rather than hypothetical hemopoietic histocompatibility genes control hemopoietic resistance. To reconcile codominant inheritance of classic H-2 antigens with the apparent recessive inheritance of hybrid resistance, we assume that there exist parental determinants that are not formed in some F1 hybrids due to preferential association of either Ia alpha chains with allogeneic beta chains or of class I antigens with allogeneic or hybrid class II restriction elements.
Full Text
The Full Text of this article is available as a PDF (920.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmann G. B., Nadler P. I., Birnkrant A., Hodes R. J. T cell recognition in the mixed lymphocyte response. II. Ia-positive splenic adherent cells are required for non-I region-induced stimulation. J Immunol. 1981 Dec;127(6):2308–2313. [PubMed] [Google Scholar]
- Bennett M. Rejection of marrow allografts: importance of H-2 homozygosity of donor cells. Transplantation. 1972 Sep;14(3):289–298. doi: 10.1097/00007890-197209000-00001. [DOI] [PubMed] [Google Scholar]
- CUDKOWICZ G., STIMPFLING J. H. INDUCTION OF IMMUNITY AND OF UNRESPONSIVENESS TO PARENTAL MARROW GRAFTS IN ADULT F-1 HYBRID MICE. Nature. 1964 Oct 31;204:450–453. doi: 10.1038/204450a0. [DOI] [PubMed] [Google Scholar]
- Clark E. A., Harmon R. C. Genetic control of natural cytotoxicity and hybrid resistance. Adv Cancer Res. 1980;31:227–285. doi: 10.1016/s0065-230x(08)60659-4. [DOI] [PubMed] [Google Scholar]
- Conrad P. J., Lerner E. A., Murphy D. B., Jones P. P., Janeway C. A., Jr Differential expression of Ia glycoprotein complexes in F1 hybrid mice detected with alloreactive cloned T cell lines. J Immunol. 1982 Dec;129(6):2616–2620. [PubMed] [Google Scholar]
- Cudkowicz G., Bennett M. Peculiar immunobiology of bone marrow allografts. I. Graft rejection by irradiated responder mice. J Exp Med. 1971 Jul 1;134(1):83–102. doi: 10.1084/jem.134.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cudkowicz G., Bennett M. Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J Exp Med. 1971 Dec 1;134(6):1513–1528. doi: 10.1084/jem.134.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cudkowicz G., Hochman P. S. Do natural killer cells engage in regulated reactions against self to ensure homeostasis? Immunol Rev. 1979;44:13–41. doi: 10.1111/j.1600-065x.1979.tb00266.x. [DOI] [PubMed] [Google Scholar]
- Hengartner H., Fathman C. G. Clones of alloreactive T cells. I. A. unique homozygous MLR-stimulating determinant present on B6 stimulators. Immunogenetics. 1980;10(2):175–184. doi: 10.1007/BF01561566. [DOI] [PubMed] [Google Scholar]
- Lafuse W. P., McCormick J. F., David C. S. Serological and biochemical identification of hybrid Ia antigens. J Exp Med. 1980 Mar 1;151(3):709–715. doi: 10.1084/jem.151.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lafuse W. P., Yokota S., David C. S. Gene complementations generate hybrid Ia specificities involved in immune response. Transplant Proc. 1981 Mar;13(1 Pt 2):1017–1019. [PubMed] [Google Scholar]
- Lengerová A., Matousek V., Zelený V. Analysis of deficient colony-forming performance of bone marrow cells in non-syngeneic cell milieu--the impact of non-immune interactions on the behaviour of pluripotent stem cells and the role of H-2 gene products. Transplant Rev. 1973;15:89–122. doi: 10.1111/j.1600-065x.1973.tb00112.x. [DOI] [PubMed] [Google Scholar]
- Lengerová A., Zelený V., Haskovec C., Hilgert I. Search for the physiological function of H-2 gene products. Eur J Immunol. 1977 Feb;7(2):62–69. doi: 10.1002/eji.1830070203. [DOI] [PubMed] [Google Scholar]
- Lotzová E. Involvement of MHC-linked hemopoietic-histocompatibility genes in allogeneic bone marrow transplantation in mice. Tissue Antigens. 1977 Mar;9(3):148–152. doi: 10.1111/j.1399-0039.1977.tb01096.x. [DOI] [PubMed] [Google Scholar]
- Lotzová E. Resistance to parental, allogeneic and xenogeneic hemopoietic grafts in irradiated mice. Exp Hematol. 1977 May;5(3):215–235. [PubMed] [Google Scholar]
- Matzinger P., Bevan M. J. Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol. 1977 Mar 1;29(1):1–5. doi: 10.1016/0008-8749(77)90269-6. [DOI] [PubMed] [Google Scholar]
- Matzinger P., Waterfield J. D. Is self tolerance H-2 restricted? Nature. 1980 Jun 12;285(5765):492–494. doi: 10.1038/285492a0. [DOI] [PubMed] [Google Scholar]
- McNicholas J. M., Murphy D. B., Matis L. A., Schwartz R. H., Lerner E. A., Janeway C. A., Jr, Jones P. P. Immune response gene function correlates with the expression of an Ia antigen. I. Preferential association of certain Ae and E alpha chains results in a quantitative deficiency in expression of an Ae:E alpha complex. J Exp Med. 1982 Feb 1;155(2):490–507. doi: 10.1084/jem.155.2.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan G. M., McKenzie I. F. Implication of the H-2L locus in hybrid histocompatibility (Hh-1). Transplantation. 1981 Jun;31(6):417–422. doi: 10.1097/00007890-198106000-00003. [DOI] [PubMed] [Google Scholar]
- Nakano K., Nakamura I., Cudkowicz G. Generation of F1 hybrid cytotoxic T lymphocytes specific for self H-2. Nature. 1981 Feb 12;289(5798):559–563. doi: 10.1038/289559a0. [DOI] [PubMed] [Google Scholar]
- Plunkett M. L., David C. S., Freed J. H. Biochemical evidence for trans complementation of structural genes in the expression of I-E antigens in F1 hybrids. J Immunol. 1981 Oct;127(4):1679–1685. [PubMed] [Google Scholar]
- Rock K. L., Barnes M. C., Germain R. N., Benacerraf B. The role of Ia molecules in the activation of T lymphocytes. II. Ia-restricted recognition of allo K/D antigens is required for class I MHC-stimulated mixed lymphocyte responses. J Immunol. 1983 Jan;130(1):457–462. [PubMed] [Google Scholar]
- Shearer G. M., Cudkowicz G. Induction of F1 hybrid antiparent cytotoxic effector cells: an in vitro model for hemopoietic histoincompatibility. Science. 1975 Nov 28;190(4217):890–893. doi: 10.1126/science.1188368. [DOI] [PubMed] [Google Scholar]
- Shigeta M., Fathman C. G. I-region genetic restrictions imposed upon the recognition of KLH by murine T-cell clones. Immunogenetics. 1981;14(5):415–422. doi: 10.1007/BF00373321. [DOI] [PubMed] [Google Scholar]
- Snell G. D. Recognition structures determined by the H-2 complex. Transplant Proc. 1976 Jun;8(2):147–156. [PubMed] [Google Scholar]
- TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
- Weinberger O., Germain R. N., Burakoff S. J. Responses to the H-2Kba mutant involve recognition of syngeneic Ia molecules. 1983 Mar 31-Apr 6Nature. 302(5907):429–431. doi: 10.1038/302429a0. [DOI] [PubMed] [Google Scholar]
- Williams R. M., Kwak L. W., Melvold R. W. Evidence for involvement of the H-2Kb and I-Ab genes in hybrid resistance to P815-X2. Immunogenetics. 1981;13(4):351–353. doi: 10.1007/BF00364501. [DOI] [PubMed] [Google Scholar]
- Yokota S., Lafuse W. P., McCormick J. F., David C. S. Detection of hybrid (combinatorial) Ia antigens using parent anti-F1 sera. J Immunol. 1981 Jan;126(1):371–374. [PubMed] [Google Scholar]
