Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Apr 1;159(4):1238–1252. doi: 10.1084/jem.159.4.1238

Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell

PMCID: PMC2187280  PMID: 6200566

Abstract

A large panel of alloreactive, interleukin 2 (IL-2)-producing T cell hybridomas was constructed from B10 alpha BALB/c primary mixed lymphocyte cultures (MLC). Functional hybrids had specificity for either I-Ad or I-Ed. These cells were used to probe determinants on Ia molecules in an attempt to detect molecular association between a nominal antigen and an Ia molecule on an antigen-presenting cell (APC). The response of a small number of these clones was significantly blocked by the addition of the Ir gene-controlled copolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) to culture. A comparison of the inhibited and uninhibited hybrids revealed an identical dose response curve. Further, both types of hybrids were activated by the same stimulator cell and frequently recognized the identical Ia molecule on that cell. Nevertheless, the inhibitory effect of GAT was localized to the stimulator cell and not to the T cell hybrids. All of the hybrids whose stimulation was blocked had specificity for the I-A molecule, which is the gene product known to control and restrict responsiveness to GAT. Further, only GT, but not a number of other related antigens, was also specifically inhibitory, which correlates with the known associational specificity of these antigens on an APC. Finally, the same stimulator cell could be shown to coordinately lose an allostimulatory determinant(s), while it was gaining an I-Ad plus GAT determinant(s). The implications of these findings on the nature of antigen-Ia association and on the role of polymorphic Ia determinants are discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benacerraf B. A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes. J Immunol. 1978 Jun;120(6):1809–1812. [PubMed] [Google Scholar]
  2. Benacerraf B., Germain R. N. The immune response genes of the major histocompatibility complex. Immunol Rev. 1978;38:70–119. doi: 10.1111/j.1600-065x.1978.tb00385.x. [DOI] [PubMed] [Google Scholar]
  3. Chesnut R. W., Grey H. M. Studies on the capacity of B cells to serve as antigen-presenting cells. J Immunol. 1981 Mar;126(3):1075–1079. [PubMed] [Google Scholar]
  4. Clark R. B., Shevach E. M. Generation of T cell colonies from responder strain 2 guinea pigs that recognize the copolymer L-glutamic acid, L-lysine in association with nonresponder strain 13 Ia antigens. J Exp Med. 1982 Feb 1;155(2):635–640. doi: 10.1084/jem.155.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dorf M. E., Plate J. M., Stimpfling J. H., Benacerraf B. Characterization of immune response and mixed lymphocyte reactions in selected intra-H-2 recombinant strains. J Immunol. 1975 Feb;114(2 Pt 1):602–605. [PubMed] [Google Scholar]
  6. Flier J. S., Kahn C. R., Jarrett D. B., Roth J. Characterization of antibodies to the insulin receptor: a cause of insulin-resistant diabetes in man. J Clin Invest. 1976 Dec;58(6):1442–1449. doi: 10.1172/JCI108600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glimcher L. H., Kim K. J., Green I., Paul W. E. Ia antigen-bearing B cell tumor lines can present protein antigen and alloantigen in a major histocompatibility complex-restricted fashion to antigen-reactive T cells. J Exp Med. 1982 Feb 1;155(2):445–459. doi: 10.1084/jem.155.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heber-Katz E., Schwartz R. H., Matis L. A., Hannum C., Fairwell T., Appella E., Hansburg D. Contribution of antigen-presenting cell major histocompatibility complex gene products to the specificity of antigen-induced T cell activation. J Exp Med. 1982 Apr 1;155(4):1086–1099. doi: 10.1084/jem.155.4.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hedrick S. M., Matis L. A., Hecht T. T., Samelson L. E., Longo D. L., Heber-Katz E., Schwartz R. H. The fine specificity of antigen and Ia determinant recognition by T cell hybridoma clones specific for pigeon cytochrome c. Cell. 1982 Aug;30(1):141–152. doi: 10.1016/0092-8674(82)90020-4. [DOI] [PubMed] [Google Scholar]
  10. Ishii N., Baxevanis C. N., Nagy Z. A., Klein J. Responder T cells depleted of alloreactive cells react to antigen presented on allogeneic macrophages from nonresponder strains. J Exp Med. 1981 Sep 1;154(3):978–982. doi: 10.1084/jem.154.3.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kappler J. W., Skidmore B., White J., Marrack P. Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. J Exp Med. 1981 May 1;153(5):1198–1214. doi: 10.1084/jem.153.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kawamoto T., Sato J. D., Le A., Polikoff J., Sato G. H., Mendelsohn J. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1337–1341. doi: 10.1073/pnas.80.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim K. J., Kanellopoulos-Langevin C., Merwin R. M., Sachs D. H., Asofsky R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol. 1979 Feb;122(2):549–554. [PubMed] [Google Scholar]
  14. Ozato K., Mayer N., Sachs D. H. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. J Immunol. 1980 Feb;124(2):533–540. [PubMed] [Google Scholar]
  15. Rock K. L., Barnes M. C., Germain R. N., Benacerraf B. The role of Ia molecules in the activation of T lymphocytes. II. Ia-restricted recognition of allo K/D antigens is required for class I MHC-stimulated mixed lymphocyte responses. J Immunol. 1983 Jan;130(1):457–462. [PubMed] [Google Scholar]
  16. Rock K. L., Benacerraf B. Inhibition of antigen-specific T lymphocyte activation by structurally related Ir gene-controlled polymers. Evidence of specific competition for accessory cell antigen presentation. J Exp Med. 1983 May 1;157(5):1618–1634. doi: 10.1084/jem.157.5.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rock K. L., Benacerraf B. MHC-restricted T cell activation: analysis with T cell hybridomas. Immunol Rev. 1983;76:29–57. doi: 10.1111/j.1600-065x.1983.tb01096.x. [DOI] [PubMed] [Google Scholar]
  18. Rock K. L., Benacerraf B. The role of Ia molecules in the activation of T lymphocytes. III. Antigen-specific, Ia-restricted, interleukin 2-producing T cell hybridomas with detectable affinity for the restricting I-A molecule. J Exp Med. 1983 Jan 1;157(1):359–364. doi: 10.1084/jem.157.1.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rock K. L. The role of Ia molecules in the activation of T lymphocytes. I. The activation of an IL 1-dependent IL 2-producing T cell hybridoma by Con A requires an interaction, which is not H-2-restricted, with an Ia-bearing accessory cell. J Immunol. 1982 Oct;129(4):1360–1366. [PubMed] [Google Scholar]
  20. Rosenthal A. S. Determinant selection and macrophage function in genetic control of the immune response. Immunol Rev. 1978;40:136–152. doi: 10.1111/j.1600-065x.1978.tb00404.x. [DOI] [PubMed] [Google Scholar]
  21. Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schwartz R. H. A clonal deletion model for Ir gene control of the immune response. Scand J Immunol. 1978;7(1):3–10. doi: 10.1111/j.1365-3083.1978.tb00420.x. [DOI] [PubMed] [Google Scholar]
  23. Schwartz R. H., Yano A., Paul W. E. Interaction between antigen-presenting cells and primed T lymphocytes: an assessment of Ir gene expression in the antigen-presenting cell. Immunol Rev. 1978;40:153–180. doi: 10.1111/j.1600-065x.1978.tb00405.x. [DOI] [PubMed] [Google Scholar]
  24. Schwartz R. H., Yano A., Paul W. E. Interaction between antigen-presenting cells and primed T lymphocytes: an assessment of Ir gene expression in the antigen-presenting cell. Immunol Rev. 1978;40:153–180. doi: 10.1111/j.1600-065x.1978.tb00405.x. [DOI] [PubMed] [Google Scholar]
  25. Shevach E. M., Rosenthal A. S. Function of macrophages in antigen recognition by guinea pig T lymphocytes. II. Role of the macrophage in the regulation of genetic control of the immune response. J Exp Med. 1973 Nov 1;138(5):1213–1229. doi: 10.1084/jem.138.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomas D. W., Meltz S. K., Wilner G. D. Nature of T lymphocyte recognition of macrophage-associated antigens. II. Macrophage determination of guinea pig T cell responses to human fibrinopeptide B. J Immunol. 1979 Sep;123(3):1299–1302. [PubMed] [Google Scholar]
  27. Watson J. Continuous proliferation of murine antigen-specific helper T lymphocytes in culture. J Exp Med. 1979 Dec 1;150(6):1510–1519. doi: 10.1084/jem.150.6.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Werdelin O. Chemically related antigens compete for presentation by accessory cells to T cells. J Immunol. 1982 Nov;129(5):1883–1891. [PubMed] [Google Scholar]
  29. Ziegler K., Unanue E. R. Identification of a macrophage antigen-processing event required for I-region-restricted antigen presentation to T lymphocytes. J Immunol. 1981 Nov;127(5):1869–1875. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES