Abstract
This report describes a Ts costimulator assay and its use to analyze cofactors required for the expression of suppressor T cell function. Activation of primed MLR-Ts (alloantigen-activated suppressor T cells suppressive of mixed leukocyte reaction) to suppressor T cell factor (TsF) production typically fails in the presence of glutaraldehyde- fixed rather than irradiated allogeneic stimulator cells. However, MLR- TsF production was restored by the addition of 48-h primary MLR supernates; MLR-derived Ts costimulator neither activated primed MLR-Ts in the absence of fixed allogeneic stimulators nor directly suppressed assay MLR. Lack of antigen specificity or genetic restriction and failure to activate unprimed MLR-Ts precursors suggested that Ts costimulator activity differed from previously described Ts inducer functions and was more closely aligned with the lymphocyte- or monocyte- derived interleukins (IL). Three findings distinguished Ts costimulator from IL-2. Depletion of IL-2 activity from MLR supernates by HT2 adsorption failed to affect Ts costimulator function. In addition, MLR supernates prepared in the presence of cyclosporin A contained no IL-2 but expressed Ts costimulator activity. Finally, gel chromatography demonstrated Ts costimulator in peaks of 21,000 and 43,000 mol wt that were largely distinct from the IL-2-containing fractions. Ts costimulator activity was also identified in phorbol myristate acetate (PMA)-induced EL4 supernates and was retained in those supernates after IL-2 depletion by HT2 adsorption. In preliminary functional characterization, MLR supernate-derived Ts costimulator triggered MLR- TsF production from irradiated MLR-Ts in the absence of proliferation. Thus a differentiative rather than proliferative stimulus required for primed MLR-Ts function appears to be provided by this Ts costimulator and has been provisionally termed Ts differentiative factor ( TsDF ). This initial characterization may thus identify one of a possibly distinctive family of interleukins required in the alloantigen-driven activation of suppressor T cells to effector function.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beckwith M., Rich S. S. Suppressor-target interaction in alloantigen induced responses: induction of a second cell in the suppressive pathway. J Immunol. 1982 Feb;128(2):791–796. [PubMed] [Google Scholar]
- Beckwith M., Rich S. Suppressive mechanisms in alloantigen-induced T cell responses. J Exp Med. 1983 Dec 1;158(6):1853–1867. doi: 10.1084/jem.158.6.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benacerraf B., Germain R. N. A single major pathway of T-lymphocyte interactions in antigen-specific immune suppression. Scand J Immunol. 1981;13(1):1–10. doi: 10.1111/j.1365-3083.1981.tb00104.x. [DOI] [PubMed] [Google Scholar]
- Bunjes D., Hardt C., Röllinghoff M., Wagner H. Cyclosporin A mediates immunosuppression of primary cytotoxic T cell responses by impairing the release of interleukin 1 and interleukin 2. Eur J Immunol. 1981 Aug;11(8):657–661. doi: 10.1002/eji.1830110812. [DOI] [PubMed] [Google Scholar]
- Dennison D. K., Rich S. S., Rich R. R. Cellular and antigenic requirements for production of mixed leukocyte reaction suppressor factor. J Immunol. 1981 Nov;127(5):2176–2182. [PubMed] [Google Scholar]
- Dietz M. H., Sy M. S., Benacerraf B., Nisonoff A., Greene M. I., Germain R. N. Antigen- and receptor-driven regulatory mechanisms. VII. H-2-restricted anti-idiotypic suppressor factor from efferent suppressor T cells. J Exp Med. 1981 Feb 1;153(2):450–463. doi: 10.1084/jem.153.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dos Reis G. A., Shevach E. M. Effect of cyclosporin A on T cell function in vitro: the mechanism of suppression of T cell proliferation depends on the nature of the T cell stimulus as well as the differentiation state of the responding T cell. J Immunol. 1982 Dec;129(6):2360–2367. [PubMed] [Google Scholar]
- DosReis G. A., Shevach E. M. Cyclosporin A-treated guinea pig responder cells secrete a genetically restricted factor that suppresses the mixed leukocyte reaction. J Clin Invest. 1983 Jan;71(1):165–169. doi: 10.1172/JCI110746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dröge W., Männel D., Falk W., Schmidt H., Panknin S., Dotterer W. The optimal activation of cytotoxic T lymphocytes requires metabolically intact stimulator cells not only for the activation of the interleukin 2-producing helper cells. J Immunol. 1983 Jul;131(1):520–528. [PubMed] [Google Scholar]
- Falk W., Männel D. N., Dröge W. Activation of cytotoxic T lymphocytes requires at least two spleen cell-derived helper factors besides interleukin 2. J Immunol. 1983 May;130(5):2214–2218. [PubMed] [Google Scholar]
- Finke J. H., Scott J., Gillis S., Hilfiker M. L. Generation of alloreactive cytotoxic T lymphocytes: evidence for a differentiation factor distinct from IL 2. J Immunol. 1983 Feb;130(2):763–767. [PubMed] [Google Scholar]
- Gillis S., Watson J. Interleukin-2 dependent culture of cytolytic T cell lines. Immunol Rev. 1981;54:81–109. doi: 10.1111/j.1600-065x.1981.tb00435.x. [DOI] [PubMed] [Google Scholar]
- Hess A. D., Donnenberg A. D., Tutschka P. J., Santos G. W. Effect of cyclosporin A on human lymphocyte responses in vitro. V. Analysis of responding T lymphocyte subpopulations in primary MLR with monoclonal antibodies. J Immunol. 1983 Feb;130(2):717–721. [PubMed] [Google Scholar]
- Hess A. D., Tutschka P. J. Effect of cyclosporin A on human lymphocyte responses in vitro. I. CsA allows for the expression of alloantigen-activated suppressor cells while preferentially inhibiting the induction of cytolytic effector lymphocytes in MLR. J Immunol. 1980 Jun;124(6):2601–2608. [PubMed] [Google Scholar]
- Hess A. D., Tutschka P. J., Santos G. W. Effect of cyclosporin A on human lymphocyte responses in vitro. III. CsA inhibits the production of T lymphocyte growth factors in secondary mixed lymphocyte responses but does not inhibit the response of primed lymphocytes to TCGF. J Immunol. 1982 Jan;128(1):355–359. [PubMed] [Google Scholar]
- Heuer J., Brüner K., Opalka B., Kölsch E. A cloned T-cell line from a tolerant mouse represents a novel antigen-specific suppressor cell type. Nature. 1982 Apr 1;296(5856):456–459. doi: 10.1038/296456a0. [DOI] [PubMed] [Google Scholar]
- Howard M., Farrar J., Hilfiker M., Johnson B., Takatsu K., Hamaoka T., Paul W. E. Identification of a T cell-derived b cell growth factor distinct from interleukin 2. J Exp Med. 1982 Mar 1;155(3):914–923. doi: 10.1084/jem.155.3.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard M., Paul W. E. Regulation of B-cell growth and differentiation by soluble factors. Annu Rev Immunol. 1983;1:307–333. doi: 10.1146/annurev.iy.01.040183.001515. [DOI] [PubMed] [Google Scholar]
- Ikezawa Z., Baxevanis C. N., Nonaka M., Abe R., Tada T., Nagy Z. A., Klein J. Monoclonal suppressor factor specific for lactate dehydrogenase B. I. Mechanism of interaction between the factor and its target cells. J Exp Med. 1983 Jun 1;157(6):1855–1866. doi: 10.1084/jem.157.6.1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jayaraman S., Bellone C. J. Hapten-specific responses to the phenyltrimethylamino hapten. IV. Occurrence of mechanistically distinct idiotypic suppressor T cells before the appearance of anti-idiotypic suppressor T cells induced by the monovalent antigen L-tyrosine-p-azophenyltrimethylammonium. J Immunol. 1983 Jun;130(6):2519–2524. [PubMed] [Google Scholar]
- Kapp J. A., Araneo B. A. Antigen-specific suppressor T cell interactions. I. Induction of an MHC-restricted suppressor factor specific for L-glutamic acid50-L-tyrosine50. J Immunol. 1982 Jun;128(6):2447–2452. [PubMed] [Google Scholar]
- Kasakura S., Taguchi M., Watanabe Y., Okubo T., Murachi T., Uchino H., Hanaoka M. Suppressor cell induction factor: a new mediator released by stimulated human lymphocytes and distinct from previously described lymphokines. J Immunol. 1983 Jun;130(6):2720–2726. [PubMed] [Google Scholar]
- Lamb J. R., Fledmann M. A human suppressor T cell clone which recognizes an autologous helper T cell clone. Nature. 1982 Dec 2;300(5891):456–458. doi: 10.1038/300456a0. [DOI] [PubMed] [Google Scholar]
- Larsson E. L. Cyclosporin A and dexamethasone suppress T cell responses by selectively acting at distinct sites of the triggering process. J Immunol. 1980 Jun;124(6):2828–2833. [PubMed] [Google Scholar]
- Meuer S. C., Cooper D. A., Hodgdon J. C., Hussey R. E., Morimoto C., Schlossman S. F., Reinherz E. L. Immunoregulatory human T lymphocytes triggered as a consequence of viral infection: clonal analysis of helper, suppressor inducer and suppressor effector cell populations. J Immunol. 1983 Sep;131(3):1167–1172. [PubMed] [Google Scholar]
- Mohagheghpour N., Benike C. J., Kansas G., Bieber C., Engleman E. G. Activation of antigen-specific suppressor T cells in the presence of cyclosporin requires interactions between T cells of inducer and suppressor lineage. J Clin Invest. 1983 Dec;72(6):2092–2100. doi: 10.1172/JCI111174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okuda K., Minami M., Sherr D. H., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. XI. Pseudogenetic restrictions of hybridoma suppressor factors. J Exp Med. 1981 Aug 1;154(2):468–479. doi: 10.1084/jem.154.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orosz C. G., Fidelus R. K., Roopenian D. C., Widmer M. B., Ferguson R. M., Bach F. H. Analysis of cloned T cell function. I. Dissection of cloned T cell proliferative responses using cyclosporin A. J Immunol. 1982 Nov;129(5):1865–1868. [PubMed] [Google Scholar]
- Palacios R. Mechanism of T cell activation: role and functional relationship of HLA-DR antigens and interleukins. Immunol Rev. 1982;63:73–110. doi: 10.1111/j.1600-065x.1982.tb00412.x. [DOI] [PubMed] [Google Scholar]
- Palacios R., Möller G. Cyclosporin A blocks receptors for HLA-DR antigens on T cells. Nature. 1981 Apr 30;290(5809):792–794. doi: 10.1038/290792a0. [DOI] [PubMed] [Google Scholar]
- Raulet D. H., Bevan M. J. A differentiation factor required for the expression of cytotoxic T-cell function. Nature. 1982 Apr 22;296(5859):754–757. doi: 10.1038/296754a0. [DOI] [PubMed] [Google Scholar]
- Rich R. R., Rich S. S. T-T cell interactions in cell-mediated immune responses to major histocompatibility complex antigens. Crit Rev Immunol. 1983;4(2):129–168. [PubMed] [Google Scholar]
- Rich S. S., David C. S. Regulatory mechanisms in cell-mediated immune responses. VIII. Differential expression of I-region determinants by suppressor cells and their targets in suppression of mixed leukocyte reactions. J Exp Med. 1979 Nov 1;150(5):1108–1121. doi: 10.1084/jem.150.5.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rich S. Regulatory mechanisms in cell-mediated immune responses. Role of I-J and I-C determinants in the activation of H-2I and H-2K/D alloantigen-specific suppressor T cells. J Exp Med. 1983 Sep 1;158(3):738–751. doi: 10.1084/jem.158.3.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreier M. H., Iscove N. N., Tees R., Aarden L., von Boehmer H. Clones of killer and helper T cells: growth requirements, specificity and retention of function in long-term culture. Immunol Rev. 1980;51:315–336. doi: 10.1111/j.1600-065x.1980.tb00326.x. [DOI] [PubMed] [Google Scholar]
- Smith K. A. T-cell growth factor. Immunol Rev. 1980;51:337–357. doi: 10.1111/j.1600-065x.1980.tb00327.x. [DOI] [PubMed] [Google Scholar]
- Swain S. L., Wetzel G. D., Soubiran P., Dutton R. W. T cell replacing factors in the B cell response to antigen. Immunol Rev. 1982;63:111–128. doi: 10.1111/j.1600-065x.1982.tb00413.x. [DOI] [PubMed] [Google Scholar]
- Sy M. S., Dietz M. H., Germain R. N., Benacerraf B., Greene M. I. Antigen- and receptor-driven regulatory mechanisms. IV. Idiotype-bearing I-J+ suppressor T cell factors induce second-order suppressor T cells which express anti-idiotypic receptors. J Exp Med. 1980 May 1;151(5):1183–1195. doi: 10.1084/jem.151.5.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takaoki M., Sy M. S., Whitaker B., Nepom J., Finberg R., Germain R. N., Nisonoff A., Benacerraf B., Greene M. I. Biologic activity of an idiotype-bearing suppressor T cell factor produced by a long-term T cell hybridoma. J Immunol. 1982 Jan;128(1):49–53. [PubMed] [Google Scholar]
- Thoman M. L., Weigle W. O. Deficiency in suppressor T cell activity in aged animals. Reconstitution of this activity by interleukin 2. J Exp Med. 1983 Jun 1;157(6):2184–2189. doi: 10.1084/jem.157.6.2184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner H., Hardt C., Rouse B. T., Röllinghoff M., Scheurich P., Pfizenmaier K. Dissection of the proliferative and differentiative signals controlling murine cytotoxic T lymphocyte responses. J Exp Med. 1982 Jun 1;155(6):1876–1881. doi: 10.1084/jem.155.6.1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang B. S., Heacock E. H., Chang-Xue Z., Tilney N. L., Strom T. B., Mannick J. A. Evidence for the presence of suppressor T lymphocytes in animals treated with cyclosporin A. J Immunol. 1982 Mar;128(3):1382–1385. [PubMed] [Google Scholar]
- Watson J. Continuous proliferation of murine antigen-specific helper T lymphocytes in culture. J Exp Med. 1979 Dec 1;150(6):1510–1519. doi: 10.1084/jem.150.6.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinberger J. Z., Germain R. N., Benacerraf B., Dorf M. E. Hapten-specific T cell responses to 4-hydroxy-3-nitrophenyl acetyl. V. Role of idiotypes in the suppressor pathway. J Exp Med. 1980 Jul 1;152(1):161–169. doi: 10.1084/jem.152.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinberger J. Z., Germain R. N., Ju S. T., Greene M. I., Benacerraf B., Dorf M. E. Hapten-specific T-cell responses to 4-hydroxy-3-nitrophenyl acetyl. II. Demonstration of idiotypic determinants on suppressor T cells. J Exp Med. 1979 Oct 1;150(4):761–776. doi: 10.1084/jem.150.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamauchi K., Chao N., Murphy D. B., Gershon R. K. Molecular composition of an antigen-specific, Ly-1 T suppressor inducer factor. One molecule binds antigen and is I-J-; another is I-J+, does not bind antigen, and imparts an Igh-variable region-linked restriction. J Exp Med. 1982 Mar 1;155(3):655–665. doi: 10.1084/jem.155.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamauchi K., Murphy D., Cantor H., Gershon R. K. Analysis of an antigen-specific H-2-restricted cell-free products(s) made by "I-J-" Ly-2 cells (Ly-2 TsF) that suppresses Ly-2 cell-depleted spleen cell activity. Eur J Immunol. 1981 Nov;11(11):913–918. doi: 10.1002/eji.1830111111. [DOI] [PubMed] [Google Scholar]
- von Boehmer H., Shortman K. The separation of different cell classes from lymphoid organs. IX. A simple and rapid method for removal of damaged cells from lymphoid cell suspensions. J Immunol Methods. 1973 Apr;2(3):293–301. doi: 10.1016/0022-1759(73)90055-0. [DOI] [PubMed] [Google Scholar]
