Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 May 1;159(5):1413–1428. doi: 10.1084/jem.159.5.1413

Mechanisms of Ly2 suppressor cell activity. Activation of an Ly1 I-J+ cell is required to transduce the suppressive signal

PMCID: PMC2187305  PMID: 6201584

Abstract

A cell-free product secreted by Ly1-2+ T cells (Ly2 TsF) can suppress the in vitro response to sheep erythrocytes (SRBC) of spleen cells depleted of Ly2+ T cells. This suppressor factor expresses biological activity only when the acceptor cells share major histocompatibility complex (MHC)-linked polymorphic genes with the cells that made the Ly2 TsF. Removal of Ly1 I-J+ cells from the assay culture abrogates the ability of Ly2 TsF to suppress these cultures, but we can replace the need for the I-J+ cells in the assay culture with an I-J+ soluble factor derived from them. We investigated the cellular interactions involved in the activation of I-J+ cells by Ly2 TsF in vitro. We have been able to induce the production of an I-J+ molecule needed for Ly2 TsF activity in a 48-h intermediate culture of B cell-depleted Ly1 spleen cells, Ly2 TsF, and antigen. This molecule not only fails to bind antigen, but is also antigen nonspecific in that it can be induced by Ly2 TsF of irrelevant specificities. In order to replace the activity of the Ly1 I-J+ cell in the assay culture, the cell induced by Ly2 TsF to produce the I-J+ molecule in vitro must share genetic polymorphisms linked to the MHC with the Ly2 TsF, and genetic polymorphisms linked to the Igh-V gene complex with the target cell. In order for Ly2 TsF to induce cells of the primary culture to produce the I-J+ molecule, Ly2 TsF must share genetic polymorphisms linked to the IE region of the MHC with the Ly1 I-J+ cell producing the I-J+ molecule. These results indicate that the suppressive mechanism of Ly2 TsF involves the interaction with an Ly1 I-J+ molecule. This I-J+ molecule serves to focus the antigen-specific suppressor molecule on the target cell. The recognition event of this suppressive complex on the surface of the acceptor cell is controlled by Igh-V-linked genes restricted by the I-J+ molecule of the suppressor complex. This suppressor interaction is confined to the suppressor effector phase of the suppressor circuit since the I-J+ molecules needed for by Ly2 TsF activity do not substitute for the I-J+ molecules needed for the activity of Ly1 TsiF , a T cell factor that initiates the suppressor cell circuit.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (989.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
  2. Flood P., Yamauchi K., Gershon R. K. Analysis of the interactions between two molecules that are required for the expression of Ly-2 suppressor cell activity. Three different types of focusing events may be needed to deliver the suppressive signal. J Exp Med. 1982 Aug 1;156(2):361–371. doi: 10.1084/jem.156.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fresno M., McVay-Boudreau L., Nabel G., Cantor H. Antigen-specific T lymphocyte clones. II. Purification and biological characterization of an antigen-specific suppressive protein synthesized by cloned T cells. J Exp Med. 1981 May 1;153(5):1260–1274. doi: 10.1084/jem.153.5.1260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fresno M., Nabel G., McVay-Boudreau L., Furthmayer H., Cantor H. Antigen-specific T lymphocyte clones. I. Characterization of a T lymphocyte clone expressing antigen-specific suppressive activity. J Exp Med. 1981 May 1;153(5):1246–1259. doi: 10.1084/jem.153.5.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Habu S., Yamauchi K., Gershon R. K., Murphy D. B. A non-T:non-B cell bears I-A, I-E, I-J, and Tla (Qa-1?) determinants. Immunogenetics. 1981;13(3):215–225. doi: 10.1007/BF00350788. [DOI] [PubMed] [Google Scholar]
  6. Minami M., Furusawa S., Dorf M. E. I-J restrictions on the activation and interaction of parental and F1-derived TS3 suppressor cells. J Exp Med. 1982 Aug 1;156(2):465–479. doi: 10.1084/jem.156.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Minami M., Honji N., Dorf M. E. Mechanism responsible for the induction of I-J restriction on TS3 suppressor cells. J Exp Med. 1982 Nov 1;156(5):1502–1515. doi: 10.1084/jem.156.5.1502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ptak W., Rosenstein R. W., Gershon R. K. Interactions between molecules (subfactors) released by different T cell sets that yield a complete factor with biological (suppressive) activity. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2375–2378. doi: 10.1073/pnas.79.7.2375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rich S. S., Rich R. R. Regulatory mechanisms in cell-mediated immune responses. III. I-region control of suppressor cell interaction with responder cells in mixed lymphocyte reactions. J Exp Med. 1976 Mar 1;143(3):672–677. doi: 10.1084/jem.143.3.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sy M. S., Dietz M. H., Germain R. N., Benacerraf B., Greene M. I. Antigen- and receptor-driven regulatory mechanisms. IV. Idiotype-bearing I-J+ suppressor T cell factors induce second-order suppressor T cells which express anti-idiotypic receptors. J Exp Med. 1980 May 1;151(5):1183–1195. doi: 10.1084/jem.151.5.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tada T., Taniguchi M., David C. S. Properties of the antigen-specific suppressive T-cell factor in the regulation of antibody response of the mouse. IV. Special subregion assignment of the gene(s) that codes for the suppressive T-cell factor in the H-2 histocompatibility complex. J Exp Med. 1976 Sep 1;144(3):713–725. doi: 10.1084/jem.144.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Takaoki M., Sy M. S., Tominaga A., Lowy A., Tsurufuji M., Finberg R., Benacerraf B., Greene M. I. I-J-restricted interactions in the generation of azobenzenearsonate-specific suppressor T cells. J Exp Med. 1982 Nov 1;156(5):1325–1334. doi: 10.1084/jem.156.5.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Taniguchi M., Saito T., Takei I., Tokuhisa T. Presence of interchain disulfide bonds between two gene products that compose the secreted form of an antigen-specific suppressor factor. J Exp Med. 1981 Jun 1;153(6):1672–1677. doi: 10.1084/jem.153.6.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Taussig M. J., Holliman A. Structure of an antigen-specific suppressor factor produced by a hybrid T-cell line. Nature. 1979 Jan 25;277(5694):308–310. doi: 10.1038/277308a0. [DOI] [PubMed] [Google Scholar]
  15. Yamauchi K., Chao N., Murphy D. B., Gershon R. K. Molecular composition of an antigen-specific, Ly-1 T suppressor inducer factor. One molecule binds antigen and is I-J-; another is I-J+, does not bind antigen, and imparts an Igh-variable region-linked restriction. J Exp Med. 1982 Mar 1;155(3):655–665. doi: 10.1084/jem.155.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yamauchi K., Murphy D., Cantor H., Gershon R. K. Analysis of an antigen-specific H-2-restricted cell-free products(s) made by "I-J-" Ly-2 cells (Ly-2 TsF) that suppresses Ly-2 cell-depleted spleen cell activity. Eur J Immunol. 1981 Nov;11(11):913–918. doi: 10.1002/eji.1830111111. [DOI] [PubMed] [Google Scholar]
  17. Yamauchi K., Murphy D., Cantor H., Gershon R. K. Analysis of antigen-specific, Ig-restricted cell-free material made by I-J+ Ly-1 cells (Ly-1 TsiF) that induces Ly-2+ cells to express suppressive activity. Eur J Immunol. 1981 Nov;11(11):905–912. doi: 10.1002/eji.1830111110. [DOI] [PubMed] [Google Scholar]
  18. Yano A., Schwartz R. H., Paul W. E. Antigen presentation in the murine T-lymphocyte proliferative response. I. Requirement for genetic identity at the major histocompatibility complex. J Exp Med. 1977 Sep 1;146(3):828–843. doi: 10.1084/jem.146.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES