Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Oct 1;158(4):1114–1128. doi: 10.1084/jem.158.4.1114

Antiadhesive properties of a quaternary structure-specific hybridoma antibody against type 1 fimbriae of Escherichia coli

PMCID: PMC2187362  PMID: 6194242

Abstract

The relationship between the structure and biological function of type 1 fimbriae of Escherichia coli was investigated using a set of monoclonal antibodies directed against conformation-specific antigenic determinants. Of three monoclonal antibodies tested, only one (clone CD3) prevented adhesion of the vaccine strain to epithelial cells or guinea pig erythrocytes. The antibody produced by CD3, but not that produced by the other two hybridoma clones (AA8 and GG1), precipitated isolated fimbriae by double diffusion in agar gel and was shown to bind in a highly discrete, periodic manner along the length of each of the fimbriae by immunoelectron microscopy. Immunoelectroblots of type 1 fimbrial subunits and polymers electrophoresed in SDS-gels indicated that the antibodies in AA8 and GG1 reacted only with fimbrial monomers (mol wt 17,000), whereas the antibody in CD3 reacted only with polymers of mol wt 102,000 (hexamers) or higher. ELISA inhibition assays demonstrated that dissociated fimbrial subunits lost their reactivity with antibody CD3 but gained reactivity with antibodies AA8 and GG1. Conversely, when allowed to reassemble in vitro in the presence of 5 mM MgCl2, the reassembled fimbriae lost their reactivity with antibodies AA8 and GG1 but regained reactivity with antibody CD3. These results demonstrated that certain antigenic epitopes are dependent on quaternary structural determinants, whereas others are independent of quaternary fimbrial structure and also are inaccessible for antibody binding in fimbriae once they have been assembled. These monoclonal antibodies should prove useful in studies of the structural determinants of the biological function of type 1 fimbriae as well as in studies of fimbrial synthesis, transport, and assembly.

Full Text

The Full Text of this article is available as a PDF (1,012.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brinton C. C., Jr The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965 Jun;27(8):1003–1054. doi: 10.1111/j.2164-0947.1965.tb02342.x. [DOI] [PubMed] [Google Scholar]
  2. Dale J. B., Ofek I., Beachey E. H. Heterogeneity of type-specific and cross-reactive antigenic determinants within a single M protein of group A streptococci. J Exp Med. 1980 May 1;151(5):1026–1038. doi: 10.1084/jem.151.5.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dodd D. C., Eisenstein B. I. Antigenic quantitation of type 1 fimbriae on the surface of Escherichia coli cells by an enzyme-linked immunosorbent inhibition assay. Infect Immun. 1982 Nov;38(2):764–773. doi: 10.1128/iai.38.2.764-773.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eshdat Y., Silverblatt F. J., Sharon N. Dissociation and reassembly of Escherichia coli type 1 pili. J Bacteriol. 1981 Oct;148(1):308–314. doi: 10.1128/jb.148.1.308-314.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fader R. C., Duffy L. K., Davis C. P., Kurosky A. Purification and chemical characterization of type 1 pili isolated from Klebsiella pneumoniae. J Biol Chem. 1982 Mar 25;257(6):3301–3305. [PubMed] [Google Scholar]
  6. Firon N., Ofek I., Sharon N. Interaction of mannose-containing oligosaccharides with the fimbrial lectin of Escherichia coli. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1426–1432. doi: 10.1016/0006-291x(82)90947-0. [DOI] [PubMed] [Google Scholar]
  7. Hasty D. L., Beachey E. H., Simpson W. A., Dale J. B. Hybridoma antibodies against protective and nonprotective antigenic determinants of a structurally defined polypeptide fragment of streptococcal M protein. J Exp Med. 1982 Apr 1;155(4):1010–1018. doi: 10.1084/jem.155.4.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kabat E. A. Dimensions and specificities of recognition sites on lectins and antibodies. J Supramol Struct. 1978;8(1):79–88. doi: 10.1002/jss.400080107. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Ofek I., Beachey E. H. Mannose binding and epithelial cell adherence of Escherichia coli. Infect Immun. 1978 Oct;22(1):247–254. doi: 10.1128/iai.22.1.247-254.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Salit I. E., Gotschlich E. C. Hemagglutination by purified type I Escherichia coli pili. J Exp Med. 1977 Nov 1;146(5):1169–1181. doi: 10.1084/jem.146.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Salit I. E., Gotschlich E. C. Type I Escherichia coli pili: characterization of binding to monkey kidney cells. J Exp Med. 1977 Nov 1;146(5):1182–1194. doi: 10.1084/jem.146.5.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Silverblatt F. J., Cohen L. S. Antipili antibody affords protection against experimental ascending pyelonephritis. J Clin Invest. 1979 Jul;64(1):333–336. doi: 10.1172/JCI109458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Silverblatt F. J., Weinstein R., Rene P. Protection against experimental pyelonephritis by antibodies to pili. Scand J Infect Dis Suppl. 1982;33:79–82. [PubMed] [Google Scholar]
  15. Söderström T., Stein K., Brinton C. C., Jr, Hosea S., Burch C., Hansson H. A., Karpas A., Schneerson R., Sutton A., Vann W. I. Serological and functional properties of monoclonal antibodies to Escherichia coli type I pilus and capsular antigens. Prog Allergy. 1983;33:259–274. [PubMed] [Google Scholar]
  16. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Watts T. H., Scraba D. G., Paranchych W. Formation of 9-nm filaments from pilin monomers obtained by octyl-glucoside dissociation of Pseudomonas aeruginosa pili. J Bacteriol. 1982 Sep;151(3):1508–1513. doi: 10.1128/jb.151.3.1508-1513.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES