Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Jul 1;160(1):179–196. doi: 10.1084/jem.160.1.179

Eosinophilic differentiation of the human promyelocytic leukemia cell line, HL-60

PMCID: PMC2187415  PMID: 6588134

Abstract

HL-60 promyelocytic leukemia cells differentiated to eosinophils and eosinophilic precursors when cultured under mildly alkaline conditions (pH 7.6-7.8) for 7 d without refeeding. New cytoplasmic granules appeared blue in the least mature cells and red in the most mature cells when stained with Wright-Giemsa. The granules also stained with Luxol-fast-blue, a characteristic of eosinophil granules. Furthermore, most cells contained the eosinophil major basic protein (MBP); the Charcot-Leyden Crystal (CLC) protein (lysophospholipase), eosinophil peroxidase, acid phosphatase, and arylsulfatase were also detected in a portion of these cells. The eosinophil major basic protein was found in a high proportion of undifferentiated cells, and thus may be constituitively produced. By examining finely banded chromosomes, translocation break points were demonstrated at q22 on one chromosome 16 and at q23 on the other homologue; abnormalities in this region of the long arm of 16 are a characteristic finding in the recently described syndrome of acute myelomonocytic leukemia (AMMoL) with abnormal bone marrow eosinophils. In common with the bone marrow eosinophils in these patients, the HL-60 eosinophil granules contained chloroacetate esterase and periodic-acid Schiff (PAS) reactive material; crystalloid inclusions were rare. Therefore, the HL-60 cell line appears to be an in vitro model for eosinophilopoiesis and may be specially suited for the study of the abnormal eosinophils seen in certain malignant conditions.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman S. J., Kephart G. M., Habermann T. M., Greipp P. R., Gleich G. J. Localization of eosinophil granule major basic protein in human basophils. J Exp Med. 1983 Sep 1;158(3):946–961. doi: 10.1084/jem.158.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ackerman S. J., Weil G. J., Gleich G. J. Formation of Charcot-Leyden crystals by human basophils. J Exp Med. 1982 Jun 1;155(6):1597–1609. doi: 10.1084/jem.155.6.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arthur D. C., Bloomfield C. D. Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia: a new association. Blood. 1983 May;61(5):994–998. [PubMed] [Google Scholar]
  4. Breitman T. R., Collins S. J., Keene B. R. Replacement of serum by insulin and transferrin supports growth and differentiation of the human promyelocytic cell line, HL-60. Exp Cell Res. 1980 Apr;126(2):494–498. doi: 10.1016/0014-4827(80)90296-7. [DOI] [PubMed] [Google Scholar]
  5. Ceccarini C., Eagle H. pH as a determinant of cellular growth and contact inhibition. Proc Natl Acad Sci U S A. 1971 Jan;68(1):229–233. doi: 10.1073/pnas.68.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A. 1978 May;75(5):2458–2462. doi: 10.1073/pnas.75.5.2458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gallagher R., Collins S., Trujillo J., McCredie K., Ahearn M., Tsai S., Metzgar R., Aulakh G., Ting R., Ruscetti F. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 1979 Sep;54(3):713–733. [PubMed] [Google Scholar]
  8. Goldfischer S. The cytochemical demonstration of lysosomal aryl sulfatase activity by light and electron microscopy. J Histochem Cytochem. 1965 Jul-Aug;13(6):520–523. doi: 10.1177/13.6.520. [DOI] [PubMed] [Google Scholar]
  9. Hyman P. M., Teichberg S., Starrett S., Vinciguerra V., Degnan T. J. Secretion of primary granules from developing human eosinophilic promyelocytes. Proc Soc Exp Biol Med. 1978 Dec;159(3):380–385. doi: 10.3181/00379727-159-40352. [DOI] [PubMed] [Google Scholar]
  10. Johnson G. R., Metcalf D. Detection of a new type of mouse eosinophil colony by Luxol-fast-blue staining. Exp Hematol. 1980 May;8(5):549–561. [PubMed] [Google Scholar]
  11. Laskin J. D., Mufson R. A., Weinstein I. B., Engelhardt D. L. Identification of a distinct phase during melanogenesis that is sensitive to extracellular pH and ionic strength. J Cell Physiol. 1980 Jun;103(3):467–474. doi: 10.1002/jcp.1041030312. [DOI] [PubMed] [Google Scholar]
  12. Le Beau M. M., Larson R. A., Bitter M. A., Vardiman J. W., Golomb H. M., Rowley J. D. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med. 1983 Sep 15;309(11):630–636. doi: 10.1056/NEJM198309153091103. [DOI] [PubMed] [Google Scholar]
  13. Leder L. D. Akute myelo-monozytäre Leukämie mit atypischen Naphthol-AS-D-Chloracetat-Esterase-positiven Eosinophilen. Acta Haematol. 1970;44(1):52–62. doi: 10.1159/000208662. [DOI] [PubMed] [Google Scholar]
  14. Lozzio B. B., Lozzio C. B., Bamberger E. G., Feliu A. S. A multipotential leukemia cell line (K-562) of human origin. Proc Soc Exp Biol Med. 1981 Apr;166(4):546–550. doi: 10.3181/00379727-166-41106. [DOI] [PubMed] [Google Scholar]
  15. Lu L., Broxmeyer H. E., Pelus L. M., Andreeff M., Moore M. A. Detection of luxol-fast-blue positive cells in human promyelocytic leukemia cell line HL-60. Exp Hematol. 1981 Oct;9(9):887–892. [PubMed] [Google Scholar]
  16. MACKENZIE C. G., MACKENZIE J. B., BECK P. The effect of pH on growth, protein synthesis, and lipid-rich particles of cultured mammalian cells. J Biophys Biochem Cytol. 1961 Jan;9:141–156. doi: 10.1083/jcb.9.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Metcalf D. Clonal analysis of the response of HL60 human myeloid leukemia cells to biological regulators. Leuk Res. 1983;7(2):117–132. doi: 10.1016/0145-2126(83)90002-4. [DOI] [PubMed] [Google Scholar]
  18. Parmley R. T., Spicer S. S. Cytochemical and ultrastructural identification of a small type granule in human late eosinophils. Lab Invest. 1974 May;30(5):557–567. [PubMed] [Google Scholar]
  19. Presentey B., Jerushalmy Z., Mintz U. Eosinophilic leukaemia: morphological, cytochemical, and electron microscopic studies. J Clin Pathol. 1979 Mar;32(3):261–271. doi: 10.1136/jcp.32.3.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rovera G., Santoli D., Damsky C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2779–2783. doi: 10.1073/pnas.76.6.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schaefer H. E., Hellriegel K. P., Hennekeuser H. H., Hübner G., Zach J., Fischer R., Gross R. Eosinophilenleukămie, eine unreifzellige Myelose mit Chloroacetatesterase-positiver Eosinophille. Eine morphologische und zytochemische Untersuchung zur Problematik monophyler Myelosen. Blut. 1973 Jan;26(1):7–19. doi: 10.1007/BF01631306. [DOI] [PubMed] [Google Scholar]
  22. Stavem P., Ly B., Blichfeldt P., Andreassen P. Acute eosinophilo-myelomonocytic leukaemia, one of the 'in between leukaemias'. Scand J Haematol. 1978 Oct;21(4):355–359. doi: 10.1111/j.1600-0609.1978.tb00377.x. [DOI] [PubMed] [Google Scholar]
  23. TERNER J. Y., SCHNUR J., GURLAND J. Stable sudanophilia. Contributions to the histochemistry of the Sudan dyes. Lab Invest. 1963 Apr;12:405–414. [PubMed] [Google Scholar]
  24. Tai P. C., Spry C. J. The mechanisms which produce vacuolated and degranulated eosinophils. Br J Haematol. 1981 Oct;49(2):219–226. doi: 10.1111/j.1365-2141.1981.tb07218.x. [DOI] [PubMed] [Google Scholar]
  25. Testa J. R., Hogge D. E., Misawa S., Zandparsa N. Chromosome 16 rearrangements in acute myelomonocytic leukemia with abnormal eosinophils. N Engl J Med. 1984 Feb 16;310(7):468–469. doi: 10.1056/NEJM198402163100720. [DOI] [PubMed] [Google Scholar]
  26. Weller P. F., Goetzl E. J., Austen K. F. Identification of human eosinophil lysophospholipase as the constituent of Charcot-Leyden crystals. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7440–7443. doi: 10.1073/pnas.77.12.7440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zetterberg A., Engström W. Mitogenic effect of alkaline pH on quiescent, serum-starved cells. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4334–4338. doi: 10.1073/pnas.78.7.4334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zucker-Franklin D., Grusky G. The identification of eosinophil colonies in soft-agar cultures by differential staining for peroxidase. J Histochem Cytochem. 1976 Dec;24(12):1270–1272. doi: 10.1177/24.12.63511. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES