Abstract
Gamma-interferon (IFN-gamma) is the macrophage-activating factor (MAF) produced by normal murine splenic cells and the murine T cell hybridoma 24/G1 that induces nonspecific tumoricidal activity in macrophages. Incubation of 24/G1 supernatants diluted to 8.3 IRU IFN-gamma/ml with 6 X 10(6) elicited peritoneal macrophages or bone marrow-derived macrophages for 4 h at 37 degrees C, resulted in removal of 80% of the MAF activity from the lymphokine preparation. Loss of activity appeared to result from absorption and not consumption because (a) 40% of the activity was removed after exposure to macrophage for 30 min at 4 degrees C, (b) no reduction of MAF activity was detected when the 24/G1 supernatant was incubated with macrophage culture supernatants, and (c) macrophage-treated supernatants showed a selective loss of MAF activity but not interleukin 2 (IL-2) activity. Absorption was dependent on the input of either IFN-gamma or macrophages and was time dependent at 37 degrees C but not at 4 degrees C. With four rodent species tested, absorption of murine IFN-gamma displayed species specificity. However, cultured human peripheral blood monocytes and the human histiocytic lymphoma cell line U937 were able to absorb the murine lymphokine. Although the majority of murine cell lines tested absorbed 24/G1 MAF activity, two murine macrophage cell lines, P388D1 and J774, were identified which absorbed significantly reduced amounts of natural IFN- gamma. Purified murine recombinant IFN-gamma was absorbed by elicited macrophages but not by P388D1. Normal macrophages but not P388D1 bound fluoresceinated microspheres coated with recombinant IFN-gamma and binding was inhibited by pretreatment of the normal cells with 24/G1 supernatants. Scatchard plot analysis showed that 12,000 molecules of soluble 125I-recombinant IFN-gamma bound per bone marrow macrophage with a Ka of 0.9 X 10(8) M-1. Binding was quantitatively inhibitable by natural IFN-gamma but not by murine IFN alpha. IFN-beta competed only weakly. Monoclonal antibodies against IFN-gamma either inhibited or enhanced MAF activity by blocking or increasing IFN-gamma binding to macrophages, respectively. These results indicate that IFN-gamma reacts with a receptor on macrophage in a specific and saturable manner and this interaction initiates macrophage activation.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguado M. T., Pujol N., Rubiol E., Tura M., Celada A. Separation of granulocytes from peripheral blood in a single step using discontinuous density gradients of Ficoll-Urografin. A comparative study with separation by dextran. J Immunol Methods. 1980;32(1):41–50. doi: 10.1016/0022-1759(80)90115-5. [DOI] [PubMed] [Google Scholar]
- Anderson P., Yip Y. K., Vilcek J. Human interferon-gamma is internalized and degraded by cultured fibroblasts. J Biol Chem. 1983 May 25;258(10):6497–6502. [PubMed] [Google Scholar]
- Anderson P., Yip Y. K., Vilcek J. Specific binding of 125I-human interferon-gamma to high affinity receptors on human fibroblasts. J Biol Chem. 1982 Oct 10;257(19):11301–11304. [PubMed] [Google Scholar]
- Basham T. Y., Merigan T. C. Recombinant interferon-gamma increases HLA-DR synthesis and expression. J Immunol. 1983 Apr;130(4):1492–1494. [PubMed] [Google Scholar]
- Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohn Z. A. Activation of mononuclear phagocytes: fact, fancy, and future. J Immunol. 1978 Sep;121(3):813–816. [PubMed] [Google Scholar]
- Erickson K. L., Cicurel L., Gruys E., Fidler I. J. Murine T-cell hybridomas that produce lymphokine with macrophage-activating factor activity as a constitutive product. Cell Immunol. 1982 Sep 1;72(1):195–201. doi: 10.1016/0008-8749(82)90297-0. [DOI] [PubMed] [Google Scholar]
- Fidler I. J. Activation in vitro of mouse macrophages by syngeneic, allogeneic, or xenogeneic lymphocyte supernatants. J Natl Cancer Inst. 1975 Nov;55(5):1159–1163. doi: 10.1093/jnci/55.5.1159. [DOI] [PubMed] [Google Scholar]
- Fischer D. G., Hubbard W. J., Koren H. S. Tumor cell killing by freshly isolated peripheral blood monocytes. Cell Immunol. 1981 Mar 1;58(2):426–435. doi: 10.1016/0008-8749(81)90235-5. [DOI] [PubMed] [Google Scholar]
- Fishelson Z., Pangburn M. K., Müller-Eberhard H. J. Characterization of the initial C3 convertase of the alternative pathway of human complement. J Immunol. 1984 Mar;132(3):1430–1434. [PubMed] [Google Scholar]
- Gabel C. A., Goldberg D. E., Kornfeld S. Identification and characterization of cells deficient in the mannose 6-phosphate receptor: evidence for an alternate pathway for lysosomal enzyme targeting. Proc Natl Acad Sci U S A. 1983 Feb;80(3):775–779. doi: 10.1073/pnas.80.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray P. W., Goeddel D. V. Cloning and expression of murine immune interferon cDNA. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5842–5846. doi: 10.1073/pnas.80.19.5842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAPLOW L. S. SIMPLIFIED MYELOPEROXIDASE STAIN USING BENZIDINE DIHYDROCHLORIDE. Blood. 1965 Aug;26:215–219. [PubMed] [Google Scholar]
- Karnovsky M. L., Lazdins J. K. Biochemical criteria for activated macrophages. J Immunol. 1978 Sep;121(3):809–813. [PubMed] [Google Scholar]
- King D. P., Jones P. P. Induction of Ia and H-2 antigens on a macrophage cell line by immune interferon. J Immunol. 1983 Jul;131(1):315–318. [PubMed] [Google Scholar]
- Kniep E. M., Domzig W., Lohmann-Matthes M. L., Kickhöfen B. Partial purification and chemical characterization of macrophage cytotoxicity factor (MCF, MAF) and its separation from migration inhibitory factor (MIF). J Immunol. 1981 Aug;127(2):417–422. [PubMed] [Google Scholar]
- Meerpohl H. G., Lohmann-Matthes M. L., Fischer H. Studies on the activation of mouse bone marrow-derived macrophages by the macrophage cytotoxicity factor (MCF). Eur J Immunol. 1976 Mar;6(3):213–217. doi: 10.1002/eji.1830060313. [DOI] [PubMed] [Google Scholar]
- Meltzer M. S., Benjamin W. R., Farrar J. J. Macrophage activation for tumor cytotoxicity: induction of macrophage tumoricidal activity by lymphokines from EL-4, a continuous T cell line. J Immunol. 1982 Dec;129(6):2802–2807. [PubMed] [Google Scholar]
- Nacy C. A., James S. L., Benjamin W. R., Farrar J. J., Hockmeyer W. T., Meltzer M. S. Activation of macrophages for microbicidal and tumoricidal effector functions by soluble factors from EL-4, a continuous T cell line. Infect Immun. 1983 May;40(2):820–824. doi: 10.1128/iai.40.2.820-824.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North R. J. The concept of the activated macrophage. J Immunol. 1978 Sep;121(3):806–809. [PMC free article] [PubMed] [Google Scholar]
- Pace J. L., Russell S. W., Schreiber R. D., Altman A., Katz D. H. Macrophage activation: priming activity from a T-cell hybridoma is attributable to interferon-gamma. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3782–3786. doi: 10.1073/pnas.80.12.3782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pace J. L., Russell S. W., Torres B. A., Johnson H. M., Gray P. W. Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol. 1983 May;130(5):2011–2013. [PubMed] [Google Scholar]
- Roberts W. K., Vasil A. Evidence for the identity of murine gamma interferon and macrophage activating factor. J Interferon Res. 1982;2(4):519–532. doi: 10.1089/jir.1982.2.519. [DOI] [PubMed] [Google Scholar]
- Schreiber R. D., Altman A., Katz D. H. Identification of a T cell hybridoma that produces large quantities of macrophage-activating factor. J Exp Med. 1982 Sep 1;156(3):677–689. doi: 10.1084/jem.156.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiber R. D. Identification of gamma-interferon as a murine macrophage-activating factor for tumor cytotoxicity. Contemp Top Immunobiol. 1984;13:171–198. doi: 10.1007/978-1-4757-1445-6_9. [DOI] [PubMed] [Google Scholar]
- Schreiber R. D., Pace J. L., Russell S. W., Altman A., Katz D. H. Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon. J Immunol. 1983 Aug;131(2):826–832. [PubMed] [Google Scholar]
- Schultz R. M., Kleinschmidt W. J. Functional identity between murine gamma interferon and macrophage activating factor. Nature. 1983 Sep 15;305(5931):239–240. doi: 10.1038/305239a0. [DOI] [PubMed] [Google Scholar]
- Steeg P. S., Moore R. N., Johnson H. M., Oppenheim J. J. Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity. J Exp Med. 1982 Dec 1;156(6):1780–1793. doi: 10.1084/jem.156.6.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Svedersky L. P., Benton C. V., Berger W. H., Rinderknecht E., Harkins R. N., Palladino M. A. Biological and antigenic similarities of murine interferon-gamma and macrophage-activating factor. J Exp Med. 1984 Mar 1;159(3):812–827. doi: 10.1084/jem.159.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiltrout R. H., Taramelli D., Holden H. T. Measurement of macrophage-mediated cytotoxicity against adherent and non-adherent target cells by release of 11 indium-oxine. J Immunol Methods. 1981;43(3):319–331. doi: 10.1016/0022-1759(81)90180-0. [DOI] [PubMed] [Google Scholar]
- Yamamoto S., Tokunaga T. D-Mannose as a component of the macrophage surface receptor for macrophage-activating factor(MAF) in mice. Cell Immunol. 1981 Jul 1;61(2):319–331. doi: 10.1016/0008-8749(81)90380-4. [DOI] [PubMed] [Google Scholar]