Abstract
Purified cytoplasmic granules from cytotoxic rat large granular lymphocytes (LGL) tumors were cytolytic to erythrocytes, splenocytes, and a number of different lymphoid tumor cells. Granule concentrations of approximately 1 microgram/ml granule protein were adequate to lyse 100% of the erythrocytes, while the nucleated cells required up to 100 micrograms/ml granule protein to achieve complete lysis. Cytoplasmic granules purified from noncytotoxic lymphoid cells did not contain detectable cytolytic activity; purified granules from rat mast cells and rat liver lysosomes likewise failed to display cytolytic activity. However, granules prepared from normal rat peripheral blood LGL were cytolytic. Granule-mediated lysis of erythrocytes and nucleated cells was complete within 3 min at room temperature. The lytic activity required calcium at concentrations of 10(-4)-10(-2) M; magnesium or barium failed to replace calcium, while strontium could replace calcium at 10(-3)-10(-2) M when nucleated cells were the target. Exposure of LGL tumor granules to calcium before the addition of target cells resulted in an inactivation of granule cytolytic activity over the course of 20 min at room temperature. Granule cytolytic activity was heat and Pronase sensitive, and could be solubilized by 2 M salt. Examination of granules exposed to calcium in the electron microscope using negative staining showed that calcium treatment of granules results in the formation of ring-shaped structures previously described to be associated with LGL-mediated cytotoxicity. These results provide support for the hypothesis that the cytotoxic processes mediated by LGL are a secretory event characterized by the release of cytolytic material from the cytoplasmic granules after triggering by a surface receptor. The results further suggest that the ring structures visible in the electron microscope are associated with the lytic event.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argov S., Poros A., Klein E. Cation requirement of natural, in-vitro generated and antibody dependent killing exerted by human lymphocytes. Immunobiology. 1979 Aug;156(1-2):25–34. [PubMed] [Google Scholar]
- Bhakdi S., Tranum-Jensen J. Membrane damage by complement. Biochim Biophys Acta. 1983 Aug 11;737(3-4):343–372. doi: 10.1016/0304-4157(83)90006-0. [DOI] [PubMed] [Google Scholar]
- Butterworth A. E., Vadas M. A., Wassom D. L., Dessein A., Hogan M., Sherry B., Gleich G. J., David J. R. Interactions between human eosinophils and schistosomula of Schistosoma mansoni. II. The mechanism of irreversible eosinophil adherence. J Exp Med. 1979 Dec 1;150(6):1456–1471. doi: 10.1084/jem.150.6.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpén O., Virtanen I., Saksela E. The cytotoxic activity of human natural killer cells requires an intact secretory apparatus. Cell Immunol. 1981 Feb;58(1):97–106. doi: 10.1016/0008-8749(81)90152-0. [DOI] [PubMed] [Google Scholar]
- Dennert G., Podack E. R. Cytolysis by H-2-specific T killer cells. Assembly of tubular complexes on target membranes. J Exp Med. 1983 May 1;157(5):1483–1495. doi: 10.1084/jem.157.5.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dourmashkin R. R., Deteix P., Simone C. B., Henkart P. Electron microscopic demonstration of lesions in target cell membranes associated with antibody-dependent cellular cytotoxicity. Clin Exp Immunol. 1980 Dec;42(3):554–560. [PMC free article] [PubMed] [Google Scholar]
- Ferluga J., Allison A. C. Cytotoxicity of isolated plasma membranes from lymph node cells. Nature. 1975 Jun 26;255(5511):708–710. doi: 10.1038/255708a0. [DOI] [PubMed] [Google Scholar]
- Füssle R., Bhakdi S., Sziegoleit A., Tranum-Jensen J., Kranz T., Wellensiek H. J. On the mechanism of membrane damage by Staphylococcus aureus alpha-toxin. J Cell Biol. 1981 Oct;91(1):83–94. doi: 10.1083/jcb.91.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gately M. K., Martz E. Early steps in specific tumor cell lysis by sensitized mouse T lymphocytes. III. Resolution of two distinct roles for calcium in the cytolytic process. J Immunol. 1979 Feb;122(2):482–489. [PubMed] [Google Scholar]
- Gleich G. J., Frigas E., Loegering D. A., Wassom D. L., Steinmuller D. Cytotoxic properties of the eosinophil major basic protein. J Immunol. 1979 Dec;123(6):2925–2927. [PubMed] [Google Scholar]
- Golstein P., Fewtrell C. Functional fractionation of human cytotoxic cells using differences in their cation requirements. Nature. 1975 Jun 5;255(5508):491–493. doi: 10.1038/255491a0. [DOI] [PubMed] [Google Scholar]
- Golstein P., Smith E. T. Mechanism of T-cell-mediated cytolysis: the lethal hit stage. Contemp Top Immunobiol. 1977;7:273–300. doi: 10.1007/978-1-4684-3054-7_8. [DOI] [PubMed] [Google Scholar]
- Hall C. W., Liebaers I., Di Natale P., Neufeld E. F. Enzymic diagnosis of the genetic mucopolysaccharide storage disorders. Methods Enzymol. 1978;50:439–456. doi: 10.1016/0076-6879(78)50048-7. [DOI] [PubMed] [Google Scholar]
- Henkart M. P., Henkart P. A. Lymphocyte mediated cytolysis as a secretory phenomenon. Adv Exp Med Biol. 1982;146:227–247. doi: 10.1007/978-1-4684-8959-0_13. [DOI] [PubMed] [Google Scholar]
- Hiserodt J. C., Britvan L. J., Targan S. R. Characterization of the cytolytic reaction mechanism of the human natural killer (NK) lymphocyte: resolution into binding, programming, and killer cell-independent steps. J Immunol. 1982 Oct;129(4):1782–1787. [PubMed] [Google Scholar]
- Hiserodt J. C., Britvan L. J., Targan S. R. Differential effects of various pharmacological agents on the cytolytic reaction mechanism of the human natural killer lymphocyte: further resolution of programming for lysis and KCIL into discrete stages. J Immunol. 1982 Nov;129(5):2266–2270. [PubMed] [Google Scholar]
- Kahn-Perles B., Golstein P. Cell membrane-mediated cytolysis by membranes from noncytolytic cells. Eur J Immunol. 1978 Jan;8(1):71–75. doi: 10.1002/eji.1830080115. [DOI] [PubMed] [Google Scholar]
- Podack E. R., Biesecker G., Kolb W. P., Müller-Eberhard H. J. The C5b-6 complex: reaction with C7, C8, C9. J Immunol. 1978 Aug;121(2):484–490. [PubMed] [Google Scholar]
- Podack E. R., Dennert G. Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. 1983 Mar 31-Apr 6Nature. 302(5907):442–445. doi: 10.1038/302442a0. [DOI] [PubMed] [Google Scholar]
- Quan P. C., Ishizaka T., Bloom B. R. Studies on the mechanism of NK cell lysis. J Immunol. 1982 Apr;128(4):1786–1791. [PubMed] [Google Scholar]
- Ramm L. E., Whitlow M. B., Koski C. L., Shin M. L., Mayer M. M. Elimination of complement channels from the plasma membranes of U937, a nucleated mammalian cell line: temperature dependence of the elimination rate. J Immunol. 1983 Sep;131(3):1411–1415. [PubMed] [Google Scholar]
- Ramm L. E., Whitlow M. B., Mayer M. M. Transmembrane channel formation by complement: functional analysis of the number of C5b6, C7, C8, and C9 molecules required for a single channel. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4751–4755. doi: 10.1073/pnas.79.15.4751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds C. W., Bere E. W., Jr, Ward J. M. Natural killer activity in the rat. III. Characterization of transplantable large granular lymphocyte (LGL) leukemias in the F344 rat. J Immunol. 1984 Jan;132(1):534–540. [PubMed] [Google Scholar]
- Reynolds C. W., Timonen T., Herberman R. B. Natural killer (NK) cell activity in the rat. I. Isolation and characterization of the effector cells. J Immunol. 1981 Jul;127(1):282–287. [PubMed] [Google Scholar]
- Roder J. C., Argov S., Klein M., Petersson C., Kiessling R., Andersson K., Hansson M. Target-effector cell interaction in the natural killer cell system. V. Energy requirements, membrane integrity, and the possible involvement of lysosomal enzymes. Immunology. 1980 May;40(1):107–116. [PMC free article] [PubMed] [Google Scholar]
- Schwartz L. B., Austen K. F., Wasserman S. I. Immunologic release of beta-hexosaminidase and beta-glucuronidase from purified rat serosal mast cells. J Immunol. 1979 Oct;123(4):1445–1450. [PubMed] [Google Scholar]
- Timonen T., Ortaldo J. R., Herberman R. B. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med. 1981 Mar 1;153(3):569–582. doi: 10.1084/jem.153.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Udenfriend S., Stein S., Böhlen P., Dairman W., Leimgruber W., Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972 Nov 24;178(4063):871–872. doi: 10.1126/science.178.4063.871. [DOI] [PubMed] [Google Scholar]
- Ward J. M., Reynolds C. W. Large granular lymphocyte leukemia. A heterogeneous lymphocytic leukemia in F344 rats. Am J Pathol. 1983 Apr;111(1):1–10. [PMC free article] [PubMed] [Google Scholar]
- Wright S. C., Bonavida B. Selective lysis of NK-sensitive target cells by a soluble mediator released from murine spleen cells and human peripheral blood lymphocytes. J Immunol. 1981 Apr;126(4):1516–1521. [PubMed] [Google Scholar]
- Zucker-Franklin D., Grusky G., Yang J. S. Arylsulfatase in natural killer cells: its possible role in cytotoxicity. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6977–6981. doi: 10.1073/pnas.80.22.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
