Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Jul 1;160(1):12–28. doi: 10.1084/jem.160.1.12

Gut mucosal mast cells. Origin, traffic, and differentiation

PMCID: PMC2187436  PMID: 6429265

Abstract

Gut mucosal mast cells (MMC), which are nearly absent in normal mice are abundant during nematode infection. In normal mice, study of MMC precursors (MMC-P: cells giving rise to MMC colonies in the presence of IL-3) show that: (a) their frequency, judged by limiting dilution is very high in bone marrow (BM) and gut, and very low in most lymphoid organs and thoracic duct lymph (TDL); (b) gut MMC-P are Thy-1- Lyt-1-2- and are not rapidly replicating; (c) they are the progeny of less differentiated BM MMC-P which are attracted from the blood to the gut mucosa by local factor(s), other than antigen and T cell factors (since normal amounts of gut MMC-P are found in germ-free, nude, and newborn mice). In mice bearing the Wehi 3 tumor (which releases enough IL-3 to produce detectable blood levels) spleen and mesenteric lymph nodes (LN) show increased MMC-P frequency, the greatest increase being in the gut and BM, where numerous differentiated MMC are found. In Nippostrongylus brasiliensis (Nb)-infested mice (known to develop a large, T cell- dependent, gut MMC infiltration), gut MMC-P proliferation is induced by IL-3 released from gut mucosal Thy-1+ Lyt-2- cells, whose in vitro IL-3 release capability is much higher than that of similar cells from normal mice. Both Nb-stimulated T blasts and proliferating MMC-P undergo cyclic traffic, migrating into the TDL and then seeding the whole length of the gut (a process which allows a widespread immune defense after a local antigenic stimulus). Experiments using 2-d interruption of this traffic and fetal gut grafts, suggest that the continuous homing of T blasts back to the gut which leads to permanent Nb-stimulated IL-3 release, is essential for the full maturation of MMC. Transfer experiments in the rat show that TDL circulating MMC-P rapidly mature into MMC when they home back to the Nb-infested gut. It is proposed that gut MMC arise after several stages of progressive differentiation of MMC-P, influenced both by IL-3 and unidentified gut factor(s).

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbud Filho M., Dy M., Lebel B., Luffau G., Hamburger J. In vitro and in vivo histamine-producing cell-stimulating factor (or IL3) production during Nippostrongylus brasiliensis infection: coincidence with self-cure phenomenon. Eur J Immunol. 1983 Oct;13(10):841–845. doi: 10.1002/eji.1830131011. [DOI] [PubMed] [Google Scholar]
  2. Crapper R. M., Schrader J. W. Frequency of mast cell precursors in normal tissues determined by an in vitro assay: antigen induces parallel increases in the frequency of P cell precursors and mast cells. J Immunol. 1983 Aug;131(2):923–928. [PubMed] [Google Scholar]
  3. Davidson W. F., Parish C. R. A procedure for removing red cells and dead cells from lymphoid cell suspensions. J Immunol Methods. 1975 Jun;7(2-3):291–300. doi: 10.1016/0022-1759(75)90026-5. [DOI] [PubMed] [Google Scholar]
  4. Davies M. D., Parrott D. M. Preparation and purification of lymphocytes from the epithelium and lamina propria of murine small intestine. Gut. 1981 Jun;22(6):481–488. doi: 10.1136/gut.22.6.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dy M., Lebel B., Kamoun P., Hamburger J. Histamine production during the anti-allograft response. Demonstration of a new lymphokine enhancing histamine synthesis. J Exp Med. 1981 Feb 1;153(2):293–309. doi: 10.1084/jem.153.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enerbäck L. Mast cells in rat gastrointestinal mucosa. I. Effects of fixation. Acta Pathol Microbiol Scand. 1966;66(3):289–302. doi: 10.1111/apm.1966.66.3.289. [DOI] [PubMed] [Google Scholar]
  7. Galli S. J., Dvorak A. M., Marcum J. A., Ishizaka T., Nabel G., Der Simonian H., Pyne K., Goldin J. M., Rosenberg R. D., Cantor H. Mast cell clones: a model for the analysis of cellular maturation. J Cell Biol. 1982 Nov;95(2 Pt 1):435–444. doi: 10.1083/jcb.95.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gresser I., Guy-Grand D., Maury C., Maunoury M. T. Interferon induces peripheral lymphadenopathy in mice. J Immunol. 1981 Oct;127(4):1569–1575. [PubMed] [Google Scholar]
  9. Guerne P. A., Piguet P. F., Vassalli P. Positively selected Lyt-2+ and Lyt-2- mouse T lymphocytes are comparable, after Con A stimulation, in release of IL 2 and of lymphokines acting on B cells, macrophages, and mast cells, but differ in interferon production. J Immunol. 1983 May;130(5):2225–2230. [PubMed] [Google Scholar]
  10. Guy-Grand D., Griscelli C., Vassalli P. The gut-associated lymphoid system: nature and properties of the large dividing cells. Eur J Immunol. 1974 Jun;4(6):435–443. doi: 10.1002/eji.1830040610. [DOI] [PubMed] [Google Scholar]
  11. Guy-Grand D., Griscelli C., Vassalli P. The mouse gut T lymphocyte, a novel type of T cell. Nature, origin, and traffic in mice in normal and graft-versus-host conditions. J Exp Med. 1978 Dec 1;148(6):1661–1677. doi: 10.1084/jem.148.6.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haig D. M., McKee T. A., Jarrett E. E., Woodbury R., Miller H. R. Generation of mucosal mast cells is stimulated in vitro by factors derived from T cells of helminth-infected rats. Nature. 1982 Nov 11;300(5888):188–190. doi: 10.1038/300188a0. [DOI] [PubMed] [Google Scholar]
  13. Ihle J. N., Keller J., Oroszlan S., Henderson L. E., Copeland T. D., Fitch F., Prystowsky M. B., Goldwasser E., Schrader J. W., Palaszynski E. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol. 1983 Jul;131(1):282–287. [PubMed] [Google Scholar]
  14. MacDonald T. T., Murray M., Ferguson A. Nippostrongylus brasiliensis: mast cell kinetics at small intestinal sites in infected rats. Exp Parasitol. 1980 Feb;49(1):9–14. doi: 10.1016/0014-4894(80)90050-8. [DOI] [PubMed] [Google Scholar]
  15. Mayrhofer G. The nature of the thymus dependency of mucosal mast cells. II. The effect of thymectomy and of depleting recirculating lymphocytes on the response to Nippostrongylus brasilliensis. Cell Immunol. 1979 Oct;47(2):312–322. doi: 10.1016/0008-8749(79)90341-1. [DOI] [PubMed] [Google Scholar]
  16. Miller H. R., Jarrett W. F. Immune reactions in mucous membranes. I. Intestinal mast cell response during helminth expulsion in the rat. Immunology. 1971 Mar;20(3):277–288. [PMC free article] [PubMed] [Google Scholar]
  17. Miller R. G., Phillips R. A. Separation of cells by velocity sedimentation. J Cell Physiol. 1969 Jun;73(3):191–201. doi: 10.1002/jcp.1040730305. [DOI] [PubMed] [Google Scholar]
  18. Nabel G., Galli S. J., Dvorak A. M., Dvorak H. F., Cantor H. Inducer T lymphocytes synthesize a factor that stimulates proliferation of cloned mast cells. Nature. 1981 May 28;291(5813):332–334. doi: 10.1038/291332a0. [DOI] [PubMed] [Google Scholar]
  19. Nagao K., Yokoro K., Aaronson S. A. Continuous lines of basophil/mast cells derived from normal mouse bone marrow. Science. 1981 Apr 17;212(4492):333–335. doi: 10.1126/science.7209531. [DOI] [PubMed] [Google Scholar]
  20. Nawa Y., Miller H. R. Adoptive transfer of the intestinal mast cell response in rats infected with Nippostrongylus brasiliensis. Cell Immunol. 1979 Feb;42(2):225–239. doi: 10.1016/0008-8749(79)90188-6. [DOI] [PubMed] [Google Scholar]
  21. Parrott D. M., Tait C., MacKenzie S., Mowat A. M., Davies M. D., Micklem H. S. Analysis of the effector functions of different populations of mucosal lymphocytes. Ann N Y Acad Sci. 1983 Jun 30;409:307–320. doi: 10.1111/j.1749-6632.1983.tb26879.x. [DOI] [PubMed] [Google Scholar]
  22. Petit A., Pery P., Luffau G. Purification of an allergen from culture fluids of Nippostrongylus brasiliensis. Mol Immunol. 1980 Nov;17(11):1341–1349. doi: 10.1016/0161-5890(80)90003-6. [DOI] [PubMed] [Google Scholar]
  23. Razin E., Cordon-Cardo C., Good R. A. Growth of a pure population of mouse mast cells in vitro with conditioned medium derived from concanavalin A-stimulated splenocytes. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2559–2561. doi: 10.1073/pnas.78.4.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ruitenberg E. J., Elgersma A. Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature. 1976 Nov 18;264(5583):258–260. doi: 10.1038/264258a0. [DOI] [PubMed] [Google Scholar]
  25. Sauser D., Anckers C., Bron C. Isolation of mouse thymus-derived lymphocyte specific surface antigens. J Immunol. 1974 Aug;113(2):617–624. [PubMed] [Google Scholar]
  26. Schrader J. W., Battye F., Scollay R. Expression of Thy-1 antigen is not limited to T cells in cultures of mouse hemopoietic cells. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4161–4165. doi: 10.1073/pnas.79.13.4161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schrader J. W., Scollay R., Battye F. Intramucosal lymphocytes of the gut: Lyt-2 and thy-1 phenotype of the granulated cells and evidence for the presence of both T cells and mast cell precursors. J Immunol. 1983 Feb;130(2):558–564. [PubMed] [Google Scholar]
  28. Sredni B., Friedman M. M., Bland C. E., Metcalfe D. D. Ultrastructural, biochemical, and functional characteristics of histamine-containing cells cloned from mouse bone marrow: tentative identification as mucosal mast cells. J Immunol. 1983 Aug;131(2):915–922. [PubMed] [Google Scholar]
  29. Tertian G., Yung Y. P., Guy-Grand D., Moore M. A. Long-term in vitro culture of murine mast cells. I. Description of a growth factor-dependent culture technique. J Immunol. 1981 Aug;127(2):788–794. [PubMed] [Google Scholar]
  30. Yung Y. P., Eger R., Tertian G., Moore M. A. Long-term in vitro culture of murine mast cells. II. Purification of a mast cell growth factor and its dissociation from TCGF. J Immunol. 1981 Aug;127(2):794–799. [PubMed] [Google Scholar]
  31. Yung Y. P., Wang S. Y., Moore M. A. Characterization of mast cell precursors by physical means: dissociation from T cells and T cell precursors. J Immunol. 1983 Jun;130(6):2843–2848. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES