Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Aug 1;160(2):521–540. doi: 10.1084/jem.160.2.521

Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence

PMCID: PMC2187458  PMID: 6332167

Abstract

We studied the mechanism of lymphocytic choriomeningitis virus (LCMV) persistence and the suppression of cytotoxic T lymphocyte (CTL) responses in BALB/c WEHI mice infected at birth with LCMV Armstrong strain. Using adoptive transfer experiments we found that spleen cells from persistently infected (carrier) mice actively suppressed the expected LCMV-specific CTL response of spleen cells from normal adult mice. The suppression was specific for the CTL response and LCMV - specific antibody responses were not affected. Associated with the specific CTL suppression was the establishment of persistent LCMV infection. The transfer of spleen or lymph node cells containing LCMV - specific CTL resulted in virus clearance and prevented establishment of the carrier state. The suppression of LCMV -specific CTL responses by carrier spleen cells is not mediated by a suppressor cell, but is due to the presence of genetic variants of LCMV in spleens of carrier mice. Such virus variants selectively suppress LCMV-specific CTL responses and cause persistent infections in immunocompetent mice. In striking contrast, wild-type LCMV Armstrong, from which these variants were generated, induces a potent CTL response in immunocompetent mice and the LCMV infection is rapidly cleared. Our results show that LCMV variants that emerge during infection in vivo play a crucial role in the suppression of virus-specific CTL responses and in the maintenance of virus persistence.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed R., Canning W. M., Kauffman R. S., Sharpe A. H., Hallum J. V., Fields B. N. Role of the host cell in persistent viral infection: coevolution of L cells and reovoirus during persistent infection. Cell. 1981 Aug;25(2):325–332. doi: 10.1016/0092-8674(81)90050-7. [DOI] [PubMed] [Google Scholar]
  2. Ahmed R., Chakraborty P. R., Fields B. N. Genetic variation during lytic reovirus infection: high-passage stocks of wild-type reovirus contain temperature-sensitive mutants. J Virol. 1980 Apr;34(1):285–287. doi: 10.1128/jvi.34.1.285-287.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benson L., Hotchin J. Antibody formation in persistent tolerant infection with lymphocytic choriomeningitis virus. Nature. 1969 Jun 14;222(5198):1045–1047. doi: 10.1038/2221045a0. [DOI] [PubMed] [Google Scholar]
  4. Buchmeier M. J., Lewicki H. A., Tomori O., Oldstone M. B. Monoclonal antibodies to lymphocytic choriomeningitis and pichinde viruses: generation, characterization, and cross-reactivity with other arenaviruses. Virology. 1981 Aug;113(1):73–85. doi: 10.1016/0042-6822(81)90137-9. [DOI] [PubMed] [Google Scholar]
  5. Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  6. Cihak J., Lehmann-Grube F. Immunological tolerance to lymphocytic choriomeningitis virus in neonatally infected virus carrier mice: evidence supporting a clonal inactivation mechanism. Immunology. 1978 Feb;34(2):265–275. [PMC free article] [PubMed] [Google Scholar]
  7. Cole G. A., Nathanson N., Prendergast R. A. Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature. 1972 Aug 11;238(5363):335–337. doi: 10.1038/238335a0. [DOI] [PubMed] [Google Scholar]
  8. Doherty P. C., Dunlop M. B., Parish C. R., Zinkernagel R. M. Inflammatory process in murine lymphocytic choriomeningitis is maximal in H-2K or H-2D compatible interactions. J Immunol. 1976 Jul;117(1):187–190. [PubMed] [Google Scholar]
  9. Dunlop M. B., Blanden R. V. Mechanisms of suppression of cytotoxic T-cell responses in murine lymphocytic choriomeningitis virus infection. J Exp Med. 1977 May 1;145(5):1131–1143. doi: 10.1084/jem.145.5.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dutko F. J., Oldstone M. B. Genomic and biological variation among commonly used lymphocytic choriomeningitis virus strains. J Gen Virol. 1983 Aug;64(Pt 8):1689–1698. doi: 10.1099/0022-1317-64-8-1689. [DOI] [PubMed] [Google Scholar]
  11. Fink P. J., Weissman I. L., Bevan M. J. Haplotype-specific suppression of cytotoxic T cell induction by antigen inappropriately presented on T cells. J Exp Med. 1983 Jan 1;157(1):141–154. doi: 10.1084/jem.157.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuccillo D. A., Kurent J. E., Sever J. L. Slow virus diseases. Annu Rev Microbiol. 1974;28(0):231–234. doi: 10.1146/annurev.mi.28.100174.001311. [DOI] [PubMed] [Google Scholar]
  13. Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982 Mar 26;215(4540):1577–1585. doi: 10.1126/science.7041255. [DOI] [PubMed] [Google Scholar]
  14. Hotchin J., Kinch W., Benson L. Lytic and turbid plaque-type mutants of lymphocytic choriomeningitis virus as a cause of neurological disease or persistent infection. Infect Immun. 1971 Sep;4(3):281–286. doi: 10.1128/iai.4.3.281-286.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kono Y., Kobayashi K., Fukunaga Y. Antigenic drift of equine infectious anemia virus in chronically infected horses. Arch Gesamte Virusforsch. 1973;41(1):1–10. doi: 10.1007/BF01249923. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lamb J. R., Skidmore B. J., Green N., Chiller J. M., Feldmann M. Induction of tolerance in influenza virus-immune T lymphocyte clones with synthetic peptides of influenza hemagglutinin. J Exp Med. 1983 May 1;157(5):1434–1447. doi: 10.1084/jem.157.5.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lehmann-Grube F., Cihak J., Varho M., Tijerina R. The immune response of the mouse to lymphocytic choriomeningitis virus. II. Active suppression of cell-mediated immunity by infection with high virus doses. J Gen Virol. 1982 Feb;58(Pt 2):223–235. doi: 10.1099/0022-1317-58-2-223. [DOI] [PubMed] [Google Scholar]
  19. Marion P. L., Robinson W. S. Hepadna viruses: hepatitis B and related viruses. Curr Top Microbiol Immunol. 1983;105:99–121. doi: 10.1007/978-3-642-69159-1_2. [DOI] [PubMed] [Google Scholar]
  20. Marker O., Volkert M. Studies on cell-mediated immunity to lymphocytic choriomeningitis virus in mice. J Exp Med. 1973 Jun 1;137(6):1511–1525. doi: 10.1084/jem.137.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mims C. A., Blanden R. V. Antiviral action of immune lymphocytes in mice infected with lymphocytic choriomeningitis virus. Infect Immun. 1972 Nov;6(5):695–698. doi: 10.1128/iai.6.5.695-698.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Narayan O., Griffin D. E., Chase J. Antigenic shift of visna virus in persistently infected sheep. Science. 1977 Jul 22;197(4301):376–378. doi: 10.1126/science.195339. [DOI] [PubMed] [Google Scholar]
  23. Oldstone M. B., Dixon F. J. Lymphocytic choriomeningitis: production of antibody by "tolerant" infected mice. Science. 1967 Dec 1;158(3805):1193–1195. doi: 10.1126/science.158.3805.1193. [DOI] [PubMed] [Google Scholar]
  24. Oldstone M. B., Sinha Y. N., Blount P., Tishon A., Rodriguez M., von Wedel R., Lampert P. W. Virus-induced alterations in homeostasis: alteration in differentiated functions of infected cells in vivo. Science. 1982 Dec 10;218(4577):1125–1127. doi: 10.1126/science.7146898. [DOI] [PubMed] [Google Scholar]
  25. Pfau C. J., Valenti J. K., Pevear D. C., Hunt K. D. Lymphocytic choriomeningitis virus killer T cells are lethal only in weakly disseminated murine infections. J Exp Med. 1982 Jul 1;156(1):79–89. doi: 10.1084/jem.156.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Popescu M., Lehmann-Grube F. Diversity of lymphocytic choriomeningitis virus: variation due to replication of the virus in the mouse. J Gen Virol. 1976 Jan;30(1):113–122. doi: 10.1099/0022-1317-30-1-113. [DOI] [PubMed] [Google Scholar]
  27. Rammensee H. G., Nagy Z. A., Klein J. Suppression of cell-mediated lymphocytotoxicity against minor histocompatibility antigens mediated by Lyt-1+Lyt-2+ T cells of stimulator-strain origin. Eur J Immunol. 1982 Nov;12(11):930–934. doi: 10.1002/eji.1830121107. [DOI] [PubMed] [Google Scholar]
  28. Traub E. PERSISTENCE OF LYMPHOCYTIC CHORIOMENINGITIS VIRUS IN IMMUNE ANIMALS AND ITS RELATION TO IMMUNITY. J Exp Med. 1936 May 31;63(6):847–861. doi: 10.1084/jem.63.6.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zinkernagel R. M., Doherty P. C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]
  30. Zinkernagel R. M., Welsh R. M. H-2 compatibility requirement for virus-specific T cell-mediated effector functions in vivo. I. Specificity of T cells conferring antiviral protection against lymphocytic choriomeningitis virus is associated with H-2K and H-2D. J Immunol. 1976 Nov;117(5 Pt 1):1495–1502. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES