Abstract
The capacity of T lymphocytes exposed in vitro to the neuropeptide vasoactive intestinal peptide (VIP) to bind VIP in vitro and to migrate to different tissues in vivo has been studied. VIP treatment of T cells resulted in a time- and dose-dependent loss of the ability of T cells to specifically bind radioiodinated VIP. Altered binding was due to a decrease in the expression of cellular receptors for VIP on the treated cells rather than an alteration in the affinity of the cells for the neuropeptide. Alteration of VIP receptor expression was not associated with a change in the expression of Thy-1, Lyt-1, or Lyt-2 surface markers by the treated cells. VIP treatment of T cells in vitro resulted, however, in a dose-dependent decrease in the ability of the treated cells to localize in mesenteric lymph nodes (MLN) and Peyer's patches of recipient animals at early times after cell transfer, and this was due to a selective decrease in the rate of accumulation of the treated cells in these tissues. There was no alteration in the distribution of VIP-treated cells in the blood, spleen, liver, or other major organs of the recipient animals. It is concluded that the presence of VIP receptors on T cells facilitates the entry of T cells into MLN and Peyer's patches in vivo, and it is proposed that this effect is mediated by T cell-VIP interactions in the vicinity of the specialized endothelium of those tissues.
Full Text
The Full Text of this article is available as a PDF (899.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm P., Alumets J., Håkanson R., Owman O., Sjöberg N. O., Sundler F., Walles B. Origin and distribution of VIP (vasoactive intestinal polypeptide)-nerves in the genito-urinary tract. Cell Tissue Res. 1980;205(3):337–347. doi: 10.1007/BF00232276. [DOI] [PubMed] [Google Scholar]
- Barja F., Mathison R. Adrenergic and peptidergic (substance P and vasoactive intestinal polypeptide) innervation of the rat portal vein. Blood Vessels. 1982;19(5):263–272. doi: 10.1159/000158392. [DOI] [PubMed] [Google Scholar]
- Beed E. A., O'Dorisio M. S., O'Dorisio T. M., Gaginella T. S. Demonstration of a functional receptor for vasoactive intestinal polypeptide on Molt 4b T lymphoblasts. Regul Pept. 1983 Apr;6(1):1–12. doi: 10.1016/0167-0115(83)90129-5. [DOI] [PubMed] [Google Scholar]
- Bishop A. E., Polak J. M., Bryant M. G., Bloom S. R., Hamilton S. Abnormalities of vasoactive intestinal polypeptide-containing nerves in Crohn's disease. Gastroenterology. 1980 Nov;79(5 Pt 1):853–860. [PubMed] [Google Scholar]
- Butcher E. C., Weissman I. L. Cellular, genetic, and evolutionary aspects of lymphocyte interactions with high-endothelia venules. Ciba Found Symp. 1980;71:265–286. doi: 10.1002/9780470720547.ch14. [DOI] [PubMed] [Google Scholar]
- Carroll A. M., Reisner Y., de Sousa M. Lyt phenotype and lectin binding properties of mouse lymphocytes which enter lymph nodes. Adv Exp Med Biol. 1982;149:161–165. doi: 10.1007/978-1-4684-9066-4_22. [DOI] [PubMed] [Google Scholar]
- Chin Y. H., Carey G. D., Woodruff J. J. Lymphocyte recognition of lymph node high endothelium. I. Inhibition of in vitro binding by a component of thoracic duct lymph. J Immunol. 1980 Oct;125(4):1764–1769. [PubMed] [Google Scholar]
- Chin Y. H., Carey G. D., Woodruff J. J. Lymphocyte recognition of lymph node high endothelium. II. Characterization of an in vitro inhibitory factor isolated by antibody affinity chromatography. J Immunol. 1980 Oct;125(4):1770–1774. [PubMed] [Google Scholar]
- Chin Y. H., Carey G. D., Woodruff J. J. Lymphocyte recognition of lymph node high endothelium. IV. Cell surface structures mediating entry into lymph nodes. J Immunol. 1982 Nov;129(5):1911–1915. [PubMed] [Google Scholar]
- Danek A., O'Dorisio M. S., O'Dorisio T. M., George J. M. Specific binding sites for vasoactive intestinal polypeptide on nonadherent peripheral blood lymphocytes. J Immunol. 1983 Sep;131(3):1173–1177. [PubMed] [Google Scholar]
- Ford W. L., Smith M. E., Andrews P. Possible clues to the mechanism underlying the selective migration of lymphocytes from the blood. Symp Soc Exp Biol. 1978;32:359–392. [PubMed] [Google Scholar]
- Freitas A. A., Rose M., Rocha B. Random recirculation of small T lymphocytes from thoracic duct lymph in the mouse. Cell Immunol. 1980 Nov;56(1):29–39. doi: 10.1016/0008-8749(80)90078-7. [DOI] [PubMed] [Google Scholar]
- GOWANS J. L., KNIGHT E. J. THE ROUTE OF RE-CIRCULATION OF LYMPHOCYTES IN THE RAT. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:257–282. doi: 10.1098/rspb.1964.0001. [DOI] [PubMed] [Google Scholar]
- Gilbert R. F., Emson P. C., Fahrenkrug J., Lee C. M., Penman E., Wass J. Axonal transport of neuropeptides in the cervical vagus nerve of the rat. J Neurochem. 1980 Jan;34(1):108–113. doi: 10.1111/j.1471-4159.1980.tb04627.x. [DOI] [PubMed] [Google Scholar]
- Goldschneider I., McGregor D. D. Migration of lymphocytes and thymocytes in the rat. I. The route of migration from blood to spleen and lymph nodes. J Exp Med. 1968 Jan 1;127(1):155–168. doi: 10.1084/jem.127.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerrero J. M., Prieto J. C., Elorza F. L., Ramirez R., Goberna R. Interaction of vasoactive intestinal peptide with human blood mononuclear cells. Mol Cell Endocrinol. 1981 Feb;21(2):151–160. doi: 10.1016/0303-7207(81)90052-6. [DOI] [PubMed] [Google Scholar]
- Hazum E., Chang K. J., Cuatrecasas P. Specific nonopiate receptors for beta-endorphin. Science. 1979 Sep 7;205(4410):1033–1035. doi: 10.1126/science.224457. [DOI] [PubMed] [Google Scholar]
- Heldin C. H., Westermark B., Wasteson A. Desensitisation of cultured glial cells to epidermal growth factor by receptor down-regulation. Nature. 1979 Nov 22;282(5737):419–420. doi: 10.1038/282419a0. [DOI] [PubMed] [Google Scholar]
- Holliger C., Radzyner M., Knoblauch M. Effects of glucagon, vasoactive intestinal peptide, and vasopressin on villous microcirculation and superior mesenteric artery blood flow of the rat. Gastroenterology. 1983 Nov;85(5):1036–1043. [PubMed] [Google Scholar]
- Jessen K. R., Saffrey M. J., Van Noorden S., Bloom S. R., Polak J. M., Burnstock G. Immunohistochemical studies of the enteric nervous system in tissue culture and in situ: localization of vascoactive intestinal polypeptide (VIP), substance-P and enkephalin immunoreactive nerves in the guinea-pig gut. Neuroscience. 1980;5(10):1717–1735. doi: 10.1016/0306-4522(80)90091-3. [DOI] [PubMed] [Google Scholar]
- Johnson H. M., Smith E. M., Torres B. A., Blalock J. E. Regulation of the in vitro antibody response by neuroendocrine hormones. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4171–4174. doi: 10.1073/pnas.79.13.4171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Josefsberg Z., Posner B. I., Patel B., Bergeron J. J. The uptake of prolactin into female rat liver. Concentration of intact hormone in the Golgi apparatus. J Biol Chem. 1979 Jan 10;254(1):209–214. [PubMed] [Google Scholar]
- Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
- King A. C., Cuatrecasas P. Peptide hormone-induced receptor mobility, aggregation, and internalization. N Engl J Med. 1981 Jul 9;305(2):77–88. doi: 10.1056/NEJM198107093050206. [DOI] [PubMed] [Google Scholar]
- Kraal G., Weissman I. L., Butcher E. C. Differences in in vivo distribution and homing of T cell subsets to mucosal vs nonmucosal lymphoid organs. J Immunol. 1983 Mar;130(3):1097–1102. [PubMed] [Google Scholar]
- Larsson L. I., Polak J. M., Buffa R., Sundler F., Solcia E. On the immunocytochemical localization of the vasoactive intestinal polypeptide. J Histochem Cytochem. 1979 May;27(5):936–938. doi: 10.1177/27.5.479555. [DOI] [PubMed] [Google Scholar]
- Lundberg J. M., Hökfelt T., Nilsson G., Terenius L., Rehfeld J., Elde R., Said S. Peptide neurons in the vagus, splanchnic and sciatic nerves. Acta Physiol Scand. 1978 Dec;104(4):499–501. doi: 10.1111/j.1748-1716.1978.tb06307.x. [DOI] [PubMed] [Google Scholar]
- MARCHESI V. T., GOWANS J. L. THE MIGRATION OF LYMPHOCYTES THROUGH THE ENDOTHELIUM OF VENULES IN LYMPH NODES: AN ELECTRON MICROSCOPE STUDY. Proc R Soc Lond B Biol Sci. 1964 Jan 14;159:283–290. doi: 10.1098/rspb.1964.0002. [DOI] [PubMed] [Google Scholar]
- Marshall S., Olefsky J. M. Effects of insulin incubation on insulin binding, glucose transport, and insulin degradation by isolated rat adipocytes. Evidence for hormone-induced desensitization at the receptor and postreceptor level. J Clin Invest. 1980 Oct;66(4):763–772. doi: 10.1172/JCI109914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathews P. M., Froelich C. J., Sibbitt W. L., Jr, Bankhurst A. D. Enhancement of natural cytotoxicity by beta-endorphin. J Immunol. 1983 Apr;130(4):1658–1662. [PubMed] [Google Scholar]
- Matsuo Y., Seki A. The coordination of gastrointestinal hormones and the autonomic nerves. Am J Gastroenterol. 1978 Jan;69(1):21–50. [PubMed] [Google Scholar]
- McCain H. W., Lamster I. B., Bozzone J. M., Grbic J. T. Beta-endorphin modulates human immune activity via non-opiate receptor mechanisms. Life Sci. 1982 Oct 11;31(15):1619–1624. doi: 10.1016/0024-3205(82)90054-6. [DOI] [PubMed] [Google Scholar]
- Mitchell J. Antigens in immunity. XVII. The migration of antigen-binding, bone-marrow-derived and thymus-derived spleen cells in mice. Immunology. 1972 Feb;22(2):231–245. [PMC free article] [PubMed] [Google Scholar]
- Ottaway C. A., Bernaerts C., Chan B., Greenberg G. R. Specific binding of vasoactive intestinal peptide to human circulating mononuclear cells. Can J Physiol Pharmacol. 1983 Jul;61(7):664–671. doi: 10.1139/y83-103. [DOI] [PubMed] [Google Scholar]
- Ottaway C. A., Bruce R. G., Parrott D. M. The in-vivo kinetics of lymphoblast localization in the small intestine. Immunology. 1983 Aug;49(4):641–648. [PMC free article] [PubMed] [Google Scholar]
- Ottaway C. A., Greenberg G. R. Interaction of vasoactive intestinal peptide with mouse lymphocytes: specific binding and the modulation of mitogen responses. J Immunol. 1984 Jan;132(1):417–423. [PubMed] [Google Scholar]
- Ottaway C. A., Parrott D. M. Regional blood flow and its relationship to lymphocyte and lymphoblast traffic during a primary immune reaction. J Exp Med. 1979 Aug 1;150(2):218–230. doi: 10.1084/jem.150.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ottaway C. A. The efficiency of entry of lymphoid cells into lymphoid and non-lymphoid tissues. Adv Exp Med Biol. 1982;149:219–224. doi: 10.1007/978-1-4684-9066-4_30. [DOI] [PubMed] [Google Scholar]
- Parrott D. M., Wilkinson P. C. Lymphocyte locomotion and migration. Prog Allergy. 1981;28:193–284. [PubMed] [Google Scholar]
- Payan D. G., Brewster D. R., Goetzl E. J. Specific stimulation of human T lymphocytes by substance P. J Immunol. 1983 Oct;131(4):1613–1615. [PubMed] [Google Scholar]
- Said S. I., Mutt V. Isolation from porcine-intestinal wall of a vasoactive octacosapeptide related to secretin and to glucagon. Eur J Biochem. 1972 Jul 13;28(2):199–204. doi: 10.1111/j.1432-1033.1972.tb01903.x. [DOI] [PubMed] [Google Scholar]
- Stamper H. B., Jr, Woodruff J. J. An in vitro model of lymphocyte homing. I. Characterization of the interaction between thoracic duct lymphocytes and specialized high-endothelial venules of lymph nodes. J Immunol. 1977 Aug;119(2):772–780. [PubMed] [Google Scholar]
- Stamper H. B., Jr, Woodruff J. J. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J Exp Med. 1976 Sep 1;144(3):828–833. doi: 10.1084/jem.144.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens S. K., Weissman I. L., Butcher E. C. Differences in the migration of B and T lymphocytes: organ-selective localization in vivo and the role of lymphocyte-endothelial cell recognition. J Immunol. 1982 Feb;128(2):844–851. [PubMed] [Google Scholar]
- Sundler F., Håkanson R., Leander S. Peptidergic nervous systems in the gut. Clin Gastroenterol. 1980 Sep;9(3):517–543. [PubMed] [Google Scholar]
- Tell G. P., Haour F., Saez J. M. Hormonal regulation of membrane receptors and cell responsiveness: a review. Metabolism. 1978 Oct;27(10):1566–1592. doi: 10.1016/s0026-0495(78)80029-8. [DOI] [PubMed] [Google Scholar]
- Tsuruhara T., Dufau M. L., Cigorraga S., Catt K. J. Hormonal regulation of testicular luteinizing hormone receptors. Effects on cyclic AMP and testosterone responses in isolated Leydig cells. J Biol Chem. 1977 Dec 25;252(24):9002–9009. [PubMed] [Google Scholar]
- Uddman R., Alumets J., Edvinsson L., Håkanson R., Sundler F. VIP nerve fibres around peripheral blood vessels. Acta Physiol Scand. 1981 May;112(1):65–70. doi: 10.1111/j.1748-1716.1981.tb06783.x. [DOI] [PubMed] [Google Scholar]
- Vlodavsky I., Brown K. D., Gospodarowicz D. A comparison of the binding of epidermal growth factor to cultured granulosa and luteal cells. J Biol Chem. 1978 May 25;253(10):3744–3750. [PubMed] [Google Scholar]
- Woodruff J. J., Katz M., Lucas L. E., Stamper H. B., Jr An in vitro model of lymphocyte homing. II. Membrane and cytoplasmic events involved in lymphocyte adherence to specialized high-endothelial venules of lymph nodes. J Immunol. 1977 Nov;119(5):1603–1610. [PubMed] [Google Scholar]
- Woodruff J., Gesner B. M. Lymphocytes: circulation altered by trypsin. Science. 1968 Jul 12;161(3837):176–178. doi: 10.1126/science.161.3837.176. [DOI] [PubMed] [Google Scholar]
- de Freitas A. A., Rose M. L., Parrott D. M. Murine mesenteric and peripheral lymph nodes: a common pool of small T cells. Nature. 1977 Dec 22;270(5639):731–733. doi: 10.1038/270731a0. [DOI] [PubMed] [Google Scholar]