Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Nov 1;160(5):1597–1602. doi: 10.1084/jem.160.5.1597

Detection and functional studies of p60-65 (Tac antigen) on activated human B cells

PMCID: PMC2187500  PMID: 6092512

Abstract

A monoclonal antibody, AT-1, is shown to precipitate a p60-65 molecule identical to the Tac antigen. With AT-1, the expression of IL-2 receptors by normal activated human B cells from peripheral blood and tonsils is documented by biosynthetic and immunofluorescence studies. AT-1 precipitated a p60-65 protein from [35S]methionine-labeled activated B cells, similar to that from activated T cells. The interleukin 2 (IL-2) receptor appeared shortly after activation with anti-IgM and B cell-stimulatory factor(s). Its expression reached its peak at 60-72 h with approximately 50% of the B blasts stained by AT-1. Other modes of activation of B cells, by T cell-independent, formalin- treated staphylococci and Epstein-Barr virus, and by T cell-dependent pokeweed mitogen, also induced IL-2 receptor expression. The functional significance of this finding was investigated using recombinant IL-2 (rIL-2). While rIL-2 did not induce resting B cells to proliferate in the presence of anti-IgM, it induced activated B cells to proliferate in the absence of other factors. On the other hand, rIL-2 did not induce the differentiation of these activated B lymphocytes. These data suggest that IL-2 may play a significant role in B cell activation.

Full Text

The Full Text of this article is available as a PDF (405.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiorazzi N., Fu S. M., Kunkel H. G. Stimulation of human B lymphocytes by antibodies to IgM and IgG: functional evidence for the expression of IgG on B-lymphocyte surface membranes. Clin Immunol Immunopathol. 1980 Mar;15(3):301–313. doi: 10.1016/0090-1229(80)90042-2. [DOI] [PubMed] [Google Scholar]
  2. Howard M., Matis L., Malek T. R., Shevach E., Kell W., Cohen D., Nakanishi K., Paul W. E. Interleukin 2 induces antigen-reactive T cell lines to secrete BCGF-I. J Exp Med. 1983 Dec 1;158(6):2024–2039. doi: 10.1084/jem.158.6.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Howard M., Paul W. E. Regulation of B-cell growth and differentiation by soluble factors. Annu Rev Immunol. 1983;1:307–333. doi: 10.1146/annurev.iy.01.040183.001515. [DOI] [PubMed] [Google Scholar]
  4. Inaba K., Granelli-Piperno A., Steinman R. M. Dendritic cells induce T lymphocytes to release B cell-stimulating factors by an interleukin 2-dependent mechanism. J Exp Med. 1983 Dec 1;158(6):2040–2057. doi: 10.1084/jem.158.6.2040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Leonard W. J., Depper J. M., Uchiyama T., Smith K. A., Waldmann T. A., Greene W. C. A monoclonal antibody that appears to recognize the receptor for human T-cell growth factor; partial characterization of the receptor. Nature. 1982 Nov 18;300(5889):267–269. doi: 10.1038/300267a0. [DOI] [PubMed] [Google Scholar]
  6. Mayer L., Fu S. M., Kunkel H. G. Human T cell hybridomas secreting factors for IgA-specific help, polyclonal B cell activation, and B cell proliferation. J Exp Med. 1982 Dec 1;156(6):1860–1865. doi: 10.1084/jem.156.6.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McCune J. M., Fu S. M., Kunkel H. G. J chain biosynthesis in pre-B cells and other possible precursor B cells. J Exp Med. 1981 Jul 1;154(1):138–145. doi: 10.1084/jem.154.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Parker D. C. Separable helper factors support B cell proliferation and maturation to Ig secretion. J Immunol. 1982 Aug;129(2):469–474. [PubMed] [Google Scholar]
  9. Swain S. L., Dennert G., Warner J. F., Dutton R. W. Culture supernatants of a stimulated T-cell line have helper activity that acts synergistically with interleukin 2 in the response of B cells to antigen. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2517–2521. doi: 10.1073/pnas.78.4.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Uchiyama T., Broder S., Waldmann T. A. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J Immunol. 1981 Apr;126(4):1393–1397. [PubMed] [Google Scholar]
  11. Wang C. Y., Al-Katib A., Lane C. L., Koziner B., Fu S. M. Induction of HLA-DC/DS (LEU 10) antigen expression by human precursor B cell lines. J Exp Med. 1983 Nov 1;158(5):1757–1762. doi: 10.1084/jem.158.5.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wano Y., Uchiyama T., Fukui K., Maeda M., Uchino H., Yodoi J. Characterization of human interleukin 2 receptor (Tac antigen) in normal and leukemic T cells: co-expression of normal and aberrant receptors on Hut-102 cells. J Immunol. 1984 Jun;132(6):3005–3010. [PubMed] [Google Scholar]
  13. Yen S. H., Gaskin F., Fu S. M. Neurofibrillary tangles in senile dementia of the Alzheimer type share an antigenic determinant with intermediate filaments of the vimentin class. Am J Pathol. 1983 Dec;113(3):373–381. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES