Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Dec 1;160(6):1864–1879. doi: 10.1084/jem.160.6.1864

Inhibition of antigen-specific T lymphocyte activation by structurally related Ir gene-controlled polymers. II. Competitive inhibition of I-E- restricted, antigen-specific T cell responses

PMCID: PMC2187519  PMID: 6210339

Abstract

Our previous studies have defined a highly specific competitive inhibition between a pair of structurally related antigens (GT and GAT) for antigen presentation by accessory cells. The present report investigates this phenomenon in a second antigenic system, which is controlled by a distinct Ir gene product. Two GL phi-specific, I-Ed- restricted, interleukin 2-producing T cell hybridomas were constructed. The antigenic fine specificity of these two hybrid clones was distinct. One hybrid reacted solely with GL phi while the second cross-reacted with GLleu and GLT. These latter two copolymers, as well as the antigen GL, were found to inhibit the GL phi response of the non-cross-reactive hybrid. The structurally related antigen G phi was not inhibitory for this clone's response. The cross-reactive GL phi hybrid could also be inhibited, but, in this case, G phi and not GL caused the inhibition. Reciprocal inhibitions could be demonstrated between these and other hybrids (e.g., GAT responsive), indicating a very high degree of specificity to the inhibition. The inhibition caused by the various copolymers was reversible by increasing the concentration of GL phi, This effect was localized to the antigen-presenting cell and not the T cell hybridoma. Functionally, this competition did not appear to be for antigen uptake or general antigen processing. These findings generalize the phenomenon of antigen competition to a second antigen system in the context of a second Ia molecule. The possible mechanisms accounting for the complex pattern of specificities in this system are discussed.

Full Text

The Full Text of this article is available as a PDF (839.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benacerraf B. A hypothesis to relate the specificity of T lymphocytes and the activity of I region-specific Ir genes in macrophages and B lymphocytes. J Immunol. 1978 Jun;120(6):1809–1812. [PubMed] [Google Scholar]
  2. Benacerraf B., Germain R. N. The immune response genes of the major histocompatibility complex. Immunol Rev. 1978;38:70–119. doi: 10.1111/j.1600-065x.1978.tb00385.x. [DOI] [PubMed] [Google Scholar]
  3. Dorf M. E., Benacerraf B. Complementation of H-2-linked Ir genes in the mouse. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3671–3675. doi: 10.1073/pnas.72.9.3671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dorf M. E., Maurer P. H., Merryman F., Benacerraf B. Inclusion group systems and cis-trans effects in responses controlled by the two complementing Ir-GLphi genes. J Exp Med. 1976 Apr 1;143(4):889–896. doi: 10.1084/jem.143.4.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dorf M. E., Twigg M. B., Benacerraf B. Genetic control of the immune response to the radom linear terpolymer of L-glutamic acid, L-lysine and L-leucine (GLleu) by complementing Ir genes. Eur J Immunol. 1976 Aug;6(8):552–556. doi: 10.1002/eji.1830060805. [DOI] [PubMed] [Google Scholar]
  6. Heber-Katz E., Hansburg D., Schwartz R. H. The Ia molecule of the antigen-presenting cell plays a critical role in immune response gene regulation of T cell activation. J Mol Cell Immunol. 1983;1(1):3–18. [PubMed] [Google Scholar]
  7. Kappler J. W., Skidmore B., White J., Marrack P. Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. J Exp Med. 1981 May 1;153(5):1198–1214. doi: 10.1084/jem.153.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kim K. J., Kanellopoulos-Langevin C., Merwin R. M., Sachs D. H., Asofsky R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol. 1979 Feb;122(2):549–554. [PubMed] [Google Scholar]
  9. Marrack P., Shimonkevitz R., Hannum C., Haskins K., Kappler J. The major histocompatibility complex-restricted antigen receptor on T cells. IV. An antiidiotypic antibody predicts both antigen and I-specificity. J Exp Med. 1983 Nov 1;158(5):1635–1646. doi: 10.1084/jem.158.5.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ozato K., Mayer N., Sachs D. H. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. J Immunol. 1980 Feb;124(2):533–540. [PubMed] [Google Scholar]
  11. Rock K. L., Barnes M. C., Germain R. N., Benacerraf B. The role of Ia molecules in the activation of T lymphocytes. II. Ia-restricted recognition of allo K/D antigens is required for class I MHC-stimulated mixed lymphocyte responses. J Immunol. 1983 Jan;130(1):457–462. [PubMed] [Google Scholar]
  12. Rock K. L., Benacerraf B. Inhibition of antigen-specific T lymphocyte activation by structurally related Ir gene-controlled polymers. Evidence of specific competition for accessory cell antigen presentation. J Exp Med. 1983 May 1;157(5):1618–1634. doi: 10.1084/jem.157.5.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rock K. L., Benacerraf B. MHC-restricted T cell activation: analysis with T cell hybridomas. Immunol Rev. 1983;76:29–57. doi: 10.1111/j.1600-065x.1983.tb01096.x. [DOI] [PubMed] [Google Scholar]
  14. Rock K. L., Benacerraf B. Selective modification of a private I-A allo-stimulating determinant(s) upon association of antigen with an antigen-presenting cell. J Exp Med. 1984 Apr 1;159(4):1238–1252. doi: 10.1084/jem.159.4.1238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rock K. L., Benacerraf B. The role of Ia molecules in the activation of T lymphocytes. III. Antigen-specific, Ia-restricted, interleukin 2-producing T cell hybridomas with detectable affinity for the restricting I-A molecule. J Exp Med. 1983 Jan 1;157(1):359–364. doi: 10.1084/jem.157.1.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosenthal A. S. Determinant selection and macrophage function in genetic control of the immune response. Immunol Rev. 1978;40:136–152. doi: 10.1111/j.1600-065x.1978.tb00404.x. [DOI] [PubMed] [Google Scholar]
  17. Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schwartz R. H., Yano A., Paul W. E. Interaction between antigen-presenting cells and primed T lymphocytes: an assessment of Ir gene expression in the antigen-presenting cell. Immunol Rev. 1978;40:153–180. doi: 10.1111/j.1600-065x.1978.tb00405.x. [DOI] [PubMed] [Google Scholar]
  19. Shevach E. M., Rosenthal A. S. Function of macrophages in antigen recognition by guinea pig T lymphocytes. II. Role of the macrophage in the regulation of genetic control of the immune response. J Exp Med. 1973 Nov 1;138(5):1213–1229. doi: 10.1084/jem.138.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shimonkevitz R., Kappler J., Marrack P., Grey H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J Exp Med. 1983 Aug 1;158(2):303–316. doi: 10.1084/jem.158.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Werdelin O. Chemically related antigens compete for presentation by accessory cells to T cells. J Immunol. 1982 Nov;129(5):1883–1891. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES