Abstract
A primary xenogeneic culture system has been devised that selectively generates undifferentiated TdT+ lymphoblasts from rat bone marrow under conditions that do not support the growth or maintenance of rat colony- forming unit-spleen (CFU-S) or granulocyte/macrophage colony-forming cells (GM-CFC). The culture system requires a mouse bone marrow feeder layer, and a serum supplement that has markedly reduced levels of cortisol. The growth of TdT+ cells can be significantly enhanced by the addition of mesodermalizing factors (e.g., fibroblast growth factor, guinea pig bone marrow extract) to the culture medium, and the serum supplement can be decreased by the addition of selenium, transferrin, and T3. The cultured TdT+ cells are antigenically "null" cells that further resemble their normal counterparts in bone marrow with respect to morphology, size, cortisone sensitivity, and pattern of TdT fluorescence. The TdT+ cells are generated with equal facility from bone marrow of normal and congenitally athymic rats, can be maintained in logarithmic growth for at least 10 mos by serial passage in vitro, and do not cause leukemia when infused into irradiated recipients. Although the lineage relationships of these immature lymphoid cells have not yet been established, our working hypothesis, based on preliminary evidence, is that the cultured TdT+ cells are primitive members of the T cell series.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baltimore D. Is terminal deoxynucleotidyl transferase a somatic mutagen in lymphocytes? Nature. 1974 Mar 29;248(447):409–411. doi: 10.1038/248409a0. [DOI] [PubMed] [Google Scholar]
- Barton R. W., Tausche F., Goldschneider I. Evidence for the cellular origin of Gross virus-induced leukemia in the rat: description of a unique LDH isozyme sub-band in leukemic lymphoid cells and lymphohemopoietic precursor cells. J Immunol. 1980 Nov;125(5):2299–2305. [PubMed] [Google Scholar]
- Baxter J. D., Harris A. W. Mechanism of glucocorticoid action: general features, with reference to steroid-mediated immunosuppression. Transplant Proc. 1975 Mar;7(1):55–65. [PubMed] [Google Scholar]
- Bollum F. J. Antibody to terminal deoxynucleotidyl transferase. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4119–4122. doi: 10.1073/pnas.72.10.4119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollum F. J., Chang L. M. Immunological detection of a conserved structure for terminal deoxynucleotidyltransferase. J Biol Chem. 1981 Aug 25;256(16):8767–8770. [PubMed] [Google Scholar]
- Bollum F. J. Terminal deoxynucleotidyl transferase: biological studies. Adv Enzymol Relat Areas Mol Biol. 1978;47:347–374. doi: 10.1002/9780470122921.ch6. [DOI] [PubMed] [Google Scholar]
- Calvano S. E., Mark D. A., Good R. A., Fernandes G. Age-related changes in lymphoid tissue content of prostaglandins in (NZB X NZW)F1 and CBA/H mice. Arthritis Rheum. 1983 Jan;26(1):113–116. doi: 10.1002/art.1780260122. [DOI] [PubMed] [Google Scholar]
- Dexter T. M., Allen T. D., Lajtha L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977 Jun;91(3):335–344. doi: 10.1002/jcp.1040910303. [DOI] [PubMed] [Google Scholar]
- Ely J. M., Greiner D. L., Lubaroff D. M., Fitch F. W. Characterization of monoclonal antibodies that define rat T cell alloantigens. J Immunol. 1983 Jun;130(6):2798–2803. [PubMed] [Google Scholar]
- Engelhard D., Landreth K. S., Kapoor N., Kincade P. W., De Bault L. E., Theodore A., Good R. A. Cycling of peripheral blood and marrow lymphocytes in cyclic neutropenia. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5734–5738. doi: 10.1073/pnas.80.18.5734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUILLEMIN R., CLAYTON G. W., SMITH J. D., LIPSCOMB H. S. Measurement of free corticosteroids in rat plasma: physiological validation of a method. Endocrinology. 1958 Sep;63(3):349–358. doi: 10.1210/endo-63-3-349. [DOI] [PubMed] [Google Scholar]
- Goldschneider I., Ahmed A., Bollum F. J., Goldstein A. L. Induction of terminal deoxynucleotidyl transferase and Lyt antigens with thymosin: identification of multiple subsets of prothymocytes in mouse bone marrow and spleen. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2469–2473. doi: 10.1073/pnas.78.4.2469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldschneider I., Metcalf D., Battye F., Mandel T. Analysis of rat hemopoietic cells on the fluorescence-activated cell sorter. I. Isolation of pluripotent hemopoietic stem cells and granulocyte-macrophage progenitor cells. J Exp Med. 1980 Aug 1;152(2):419–437. doi: 10.1084/jem.152.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldschneider I., Metcalf D., Mandel T., Bollum F. J. Analysis of rat hemopoietic cells on the fluorescence-activated cell sorter. II. Isolation of terminal deoxynucleotidyl transferase-positive cells. J Exp Med. 1980 Aug 1;152(2):438–446. doi: 10.1084/jem.152.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldschneider I. Ontogeny of terminal deoxynucleotidyl transferase containing lymphocytes in rats and mice. Adv Exp Med Biol. 1982;145:115–132. doi: 10.1007/978-1-4684-8929-3_12. [DOI] [PubMed] [Google Scholar]
- Gospodarowicz D., Greenburg G., Bialecki H., Zetter B. R. Factors involved in the modulation of cell proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro. 1978 Jan;14(1):85–118. doi: 10.1007/BF02618177. [DOI] [PubMed] [Google Scholar]
- Greenberger J. S. Sensitivity of corticosteroid-dependent insulin-resistant lipogenesis in marrow preadipocytes of obese-diabetic (db/db) mice. Nature. 1978 Oct 26;275(5682):752–754. doi: 10.1038/275752a0. [DOI] [PubMed] [Google Scholar]
- Gregoire K. E., Goldschneider I., Barton R. W., Bollum F. J. Intracellular distribution of terminal deoxynucleotidyl transferase in rat bone marrow and thymus. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3993–3996. doi: 10.1073/pnas.74.9.3993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregoire K. E., Goldschneider I., Barton R. W., Bollum F. J. Ontogeny of terminal deoxynucleotidyl transferase-positive cells in lymphohemopoietic tissues of rat and mouse. J Immunol. 1979 Sep;123(3):1347–1352. [PubMed] [Google Scholar]
- Honn K. V., Singley J. A., Chavin W. Fetal bovine serum: a multivariate standard. Proc Soc Exp Biol Med. 1975 Jun;149(2):344–347. doi: 10.3181/00379727-149-38804. [DOI] [PubMed] [Google Scholar]
- Ioachim H. L. Divergence in tumor induction of thymus cells transformed in vitro by Gross leukemia virus. J Natl Cancer Inst. 1969 Jan;42(1):101–113. [PubMed] [Google Scholar]
- Jones-Villeneuve E., Phillips R. A. Potentials for lymphoid differentiation by cells from long term cultures of bone marrow. Exp Hematol. 1980 Jan;8(1):65–76. [PubMed] [Google Scholar]
- Kincade P. W., Paige C. J., Parkhouse R. M., Lee G. Characterization of murine colony-forming B cells. I. Distribution, resistance to anti-immunoglobulin antibodies, and expression of Ia antigens. J Immunol. 1978 Apr;120(4):1289–1294. [PubMed] [Google Scholar]
- Lubaroff D. M., Waksman B. H. Bone marrow as source of cells in reactions of cellular hypersensitivity. II. Identification of allogeneic or hybrid cells by immunofluorescence in passively transferred tuberculin reactions. J Exp Med. 1968 Dec 1;128(6):1437–1447. doi: 10.1084/jem.128.6.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mason D. W., Arthur R. P., Dallman M. J., Green J. R., Spickett G. P., Thomas M. L. Functions of rat T-lymphocyte subsets isolated by means of monoclonal antibodies. Immunol Rev. 1983;74:57–82. doi: 10.1111/j.1600-065x.1983.tb01084.x. [DOI] [PubMed] [Google Scholar]
- Reimann J., Miller R. G. Differentiation from precursors in athymic nude mouse bone marrow of unusual spontaneously cytolytic cells showing anti-self-H-2 specificity and bearing T cell markers. J Exp Med. 1983 Nov 1;158(5):1672–1692. doi: 10.1084/jem.158.5.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrader J. W., Goldschneider I., Bollum F. J., Schrader S. In vitro studies on lymphocyte differentiation. II. Generation of terminal deoxynucleotidyl transferase-positive cells in long-term cultures of mouse bone marrow. J Immunol. 1979 Jun;122(6):2337–2339. [PubMed] [Google Scholar]
- Schrader J. W., Schrader S. In vitro studies on lymphocyte differentiation. I. Long term in vitro culture of cells giving rise to functional lymphocytes in irradiated mice. J Exp Med. 1978 Sep 1;148(3):823–828. doi: 10.1084/jem.148.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
- Takeda A., Waldron J. A., Jr, Ruddle N. H., Cone R. E. Analysis of normal and neoplastic lymphocyte surface-labeled proteins by two-dimensional polyacrylamide gel electrophoresis. Exp Cell Res. 1983 Oct;148(1):83–93. doi: 10.1016/0014-4827(83)90189-1. [DOI] [PubMed] [Google Scholar]
- Thomas C. M., van den Berg R. J., de Koning Gans H. J., Leguin R. M. Radioimmunoassays for prostaglandins. I. Technical validation of prostaglandin F2alpha measurements in human plasma using sephadex G-25 gelfiltration. Prostaglandins. 1978 May;15(5):839–847. doi: 10.1016/0090-6980(78)90150-8. [DOI] [PubMed] [Google Scholar]
- Whitlock C. A., Witte O. N. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3608–3612. doi: 10.1073/pnas.79.11.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitlock C. A., Ziegler S. F., Treiman L. J., Stafford J. I., Witte O. N. Differentiation of cloned populations of immature B cells after transformation with Abelson murine leukemia virus. Cell. 1983 Mar;32(3):903–911. doi: 10.1016/0092-8674(83)90075-2. [DOI] [PubMed] [Google Scholar]