Abstract
Mixed xenogeneically reconstituted mice (F344 rat + C57BL/10Sn---- C57BL/10Sn), which specifically retain F344 tail skin xenografts, were studied for the specificity of such hyporeactivity and for in vitro reactivity and immunocompetence. Survival of mixed reconstituted animals was excellent, without evidence for graft vs. host disease. Donor-type tail skin grafts were specifically prolonged (mean survival time = 80 d) in comparison with normal controls and syngeneically reconstituted animals. In vitro, such animals manifested specific hyporeactivity by mixed lymphocyte reaction and cell-mediated lympholysis to F344 rat and B10 cells, with normal response to third- party rat (Wistar-Furth) and mouse (B10.BR). Examination of lymphoid tissues with a fluorescence-activated cell sorter revealed low levels, if any, of donor-type cells detectable. This system offers a model for investigation of xenogeneic transplantation tolerance.
Full Text
The Full Text of this article is available as a PDF (909.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BILLINGHAM R. E., BRENT L., MEDAWAR P. B. Actively acquired tolerance of foreign cells. Nature. 1953 Oct 3;172(4379):603–606. doi: 10.1038/172603a0. [DOI] [PubMed] [Google Scholar]
- Boyse E. A., Lance E. M., Carswell E. A., Cooper S., Old L. J. Rejection of skin allografts by radiation chimaeras: selective gene action in the specification of cell surface structure. Nature. 1970 Aug 29;227(5261):901–903. doi: 10.1038/227901a0. [DOI] [PubMed] [Google Scholar]
- Dittmer J., Bennett M. Successful cardiac allografts in syngeneic radiation chimeras. Mol Cell Biochem. 1978 Nov 1;21(2):83–94. doi: 10.1007/BF00240279. [DOI] [PubMed] [Google Scholar]
- Epstein S. L., Ozato K., Sachs D. H. Blocking of allogeneic cell-mediated lympholysis by monoclonal antibodies to H-2 antigens. J Immunol. 1980 Jul;125(1):129–135. [PubMed] [Google Scholar]
- Hodes R. J., Singer A. Cellular and genetic control of antibody responses in vitro. I. Cellular requirements for the generation of genetically controlled primary IgM responses to soluble antigens. Eur J Immunol. 1977 Dec;7(12):892–897. doi: 10.1002/eji.1830071214. [DOI] [PubMed] [Google Scholar]
- Ildstad S. T., Sachs D. H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature. 1984 Jan 12;307(5947):168–170. doi: 10.1038/307168a0. [DOI] [PubMed] [Google Scholar]
- JONES E. C., KROHN P. L. Orthotopic ovarian transplantation in mice. J Endocrinol. 1960 Apr;20:135–146. doi: 10.1677/joe.0.0200135. [DOI] [PubMed] [Google Scholar]
- Lang P., Charpentier B., Martin B., Cividino N., Fries D. Functional analysis of cells present within a popliteal lymph node after a "regional" graft-versus-host reaction in the rat. Transplant Proc. 1981 Jun;13(2):1444–1449. [PubMed] [Google Scholar]
- Lems S. P., Rijke-Schilder T. P., Capel P. J., Koene R. A. Similar activities of IgG1 and IgG2 alloantibodies in enhancement of mouse skin grafts and in opsonization. Transplantation. 1984 Mar;37(3):291–296. doi: 10.1097/00007890-198403000-00015. [DOI] [PubMed] [Google Scholar]
- Myburgh J. A., Smit J. A., Browde S., Hill R. R. Transplantation tolerance in primates following total lymphoid irradiation and allogeneic bone marrow injection. I. Orthotopic liver allografts. Transplantation. 1980 May;29(5):401–404. doi: 10.1097/00007890-198005000-00011. [DOI] [PubMed] [Google Scholar]
- Müller-Ruchholtz W., Müller-Hermelink H. K., Wottge H. U. Induction of lasting hemopoietic chimerism in a xenogeneic (rat to mouse) model. Transplant Proc. 1979 Mar;11(1):517–521. [PubMed] [Google Scholar]
- Rapaport F. T., Bachvaroff R. J., Watanabe K., Hirasawa H., Cannon F. D., Mollen N., Blumenstock D. A., Ayvazian J. H., Ferrebee J. W. Cellular factors. Immunologic tolerance: irradiation and bone marrow transplantation in induction of canine allogeneic unresponsiveness. Transplant Proc. 1977 Mar;9(1):891–894. [PubMed] [Google Scholar]
- Rayfield L. S., Brent L. Tolerance, immunocompetence, and secondary disease in fully allogeneic radiation chimeras. Transplantation. 1983 Aug;36(2):183–189. doi: 10.1097/00007890-198308000-00015. [DOI] [PubMed] [Google Scholar]
- Schwartz R. H., Fathman C. G., Sachs D. H. Inhibition of stimulation in murine mixed lymphocyte cultures with an alloantiserum directed against a shared Ia determinant. J Immunol. 1976 Apr;116(4):929–935. [PubMed] [Google Scholar]
- Sharrow S. O., Mathieson B. J., Singer A. Cell surface appearance of unexpected host MHC determinants on thymocytes from radiation bone marrow chimeras. J Immunol. 1981 Apr;126(4):1327–1335. [PubMed] [Google Scholar]
- Singer A., Hathcock K. S., Hodes R. J. Cellular and genetic control of antibody responses. V. Helper T-cell recognition of H-2 determinants on accessory cells but not B cells. J Exp Med. 1979 May 1;149(5):1208–1226. doi: 10.1084/jem.149.5.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slavin S., Strober S., Fuks Z., Kaplan H. S. Induction of specific tissue transplantation tolerance using fractionated total lymphoid irradiation in adult mice: long-term survival of allogeneic bone marrow and skin grafts. J Exp Med. 1977 Jul 1;146(1):34–48. doi: 10.1084/jem.146.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streilein J. W., Klein J. Neonatal tolerance induction across regions of H-2 complex. J Immunol. 1977 Dec;119(6):2147–2150. [PubMed] [Google Scholar]
- Voisin G. A. Immunity and tolerance: a unified concept. Cell Immunol. 1971 Dec;2(6):670–689. doi: 10.1016/0008-8749(71)90014-1. [DOI] [PubMed] [Google Scholar]
- Zinkernagel R. M., Althage A., Callahan G., Welsh R. M., Jr On the immunocompetence of H-2 incompatible irradiation bone marrow chimeras. J Immunol. 1980 May;124(5):2356–2365. [PubMed] [Google Scholar]