Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Dec 1;160(6):1792–1802. doi: 10.1084/jem.160.6.1792

Stimulation of lymphokine release from T lymphoblasts. Requirement for mRNA synthesis and inhibition by cyclosporin A

PMCID: PMC2187533  PMID: 6334715

Abstract

Three-day, concanavalin A-induced T lymphoblasts have been used as a model to study lymphokine release from sensitized T cells. The blasts responded to interleukin 2 (IL-2) but did not constitutively produce this or other lymphokines. After mitogen restimulation, blast cells synthesized IL-2 as well as gamma-interferon, B cell-stimulating factor(s), and cytolytic differentiation factor(s). This production resulted from the induction of biologically active lymphokine mRNA. Cyclosporin A (CSA), a potent immunosuppressive agent, strongly inhibited synthesis of IL-2, gamma-interferon, and B cell- and CTL- stimulating factor(s), from mitogen-restimulated T blasts. In contrast, CSA did not block the cytolytic activity of the T blasts, nor modify bulk protein synthesis induced by Con A. CSA also blocked lymphokine release from a phorbol myristate acetate-stimulated thymoma cell line, EL-4. The effect of CSA was to block the induction of active lymphokine mRNA, as assayed in an oocyte translation system. This selective inhibition of lymphokine mRNA suggests that CSA may be useful in the therapy of inflammatory, lymphokine-mediated disease states.

Full Text

The Full Text of this article is available as a PDF (785.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrus L., Lafferty K. J. Inhibition of T-cell activity by cyclosporin A. Scand J Immunol. 1981 May;15(5):449–458. doi: 10.1111/j.1365-3083.1982.tb00670.x. [DOI] [PubMed] [Google Scholar]
  2. Andrus L., Lafferty K. J. Interleukin 2 production by alloantigen (H-2) activated T cells. Aust J Exp Biol Med Sci. 1981 Aug;59(4):413–426. doi: 10.1038/icb.1981.35. [DOI] [PubMed] [Google Scholar]
  3. Bleackley R. C., Caplan B., Havele C., Ritzel R. G., Mosmann T. R., Farrar J. J., Paetkau V. Translation of lymphocyte mRNA into biologically-active Interleukin 2 in oocytes. J Immunol. 1981 Dec;127(6):2432–2435. [PubMed] [Google Scholar]
  4. Borel J. F., Feurer C., Gubler H. U., Stähelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions. 1976 Jul;6(4):468–475. doi: 10.1007/BF01973261. [DOI] [PubMed] [Google Scholar]
  5. Bunjes D., Hardt C., Röllinghoff M., Wagner H. Cyclosporin A mediates immunosuppression of primary cytotoxic T cell responses by impairing the release of interleukin 1 and interleukin 2. Eur J Immunol. 1981 Aug;11(8):657–661. doi: 10.1002/eji.1830110812. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Farrar J. J., Fuller-Farrar J., Simon P. L., Hilfiker M. L., Stadler B. M., Farrar W. L. Thymoma production of T cell growth factor (Interleukin 2). J Immunol. 1980 Dec;125(6):2555–2558. [PubMed] [Google Scholar]
  8. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  9. Granelli-Piperno A., Vassalli J. D., Reich E. Purification of murine T cell growth factor. A lymphocyte mitogen with helper activity. J Exp Med. 1981 Aug 1;154(2):422–431. doi: 10.1084/jem.154.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gurdon J. B. Injected nuclei in frog oocytes: fate, enlargement, and chromatin dispersal. J Embryol Exp Morphol. 1976 Dec;36(3):523–540. [PubMed] [Google Scholar]
  11. HALL J. G., MORRIS B. The lymph-borne cells of the immune response. Q J Exp Physiol Cogn Med Sci. 1963 Jul;48:235–247. doi: 10.1113/expphysiol.1963.sp001660. [DOI] [PubMed] [Google Scholar]
  12. Hall J. G. Studies of the cells in the afferent and efferent lymph of lymph nodes draining the site of skin homografts. J Exp Med. 1967 May 1;125(5):737–754. doi: 10.1084/jem.125.5.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hess A. D., Tutschka P. J. Effect of cyclosporin A on human lymphocyte responses in vitro. I. CsA allows for the expression of alloantigen-activated suppressor cells while preferentially inhibiting the induction of cytolytic effector lymphocytes in MLR. J Immunol. 1980 Jun;124(6):2601–2608. [PubMed] [Google Scholar]
  14. Howard M., Paul W. E. Regulation of B-cell growth and differentiation by soluble factors. Annu Rev Immunol. 1983;1:307–333. doi: 10.1146/annurev.iy.01.040183.001515. [DOI] [PubMed] [Google Scholar]
  15. Inaba K., Granelli-Piperno A., Steinman R. M. Dendritic cells induce T lymphocytes to release B cell-stimulating factors by an interleukin 2-dependent mechanism. J Exp Med. 1983 Dec 1;158(6):2040–2057. doi: 10.1084/jem.158.6.2040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Interleukins and lymphocyte activation. Immunol Rev. 1982;63:1–209. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Pinkston P., Bitterman P. B., Crystal R. G. Spontaneous release of interleukin-2 by lung T lymphocytes in active pulmonary sarcoidosis. N Engl J Med. 1983 Apr 7;308(14):793–800. doi: 10.1056/NEJM198304073081401. [DOI] [PubMed] [Google Scholar]
  19. Schreiber R. D., Pace J. L., Russell S. W., Altman A., Katz D. H. Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon. J Immunol. 1983 Aug;131(2):826–832. [PubMed] [Google Scholar]
  20. Shidani B., Milon G., Marchal G., Truffa-Bachi P. Cyclosporin A inhibits the delayed-type hypersensitivity reaction: impaired production of early pro-inflammatory mediator(s). Eur J Immunol. 1984 Apr;14(4):314–318. doi: 10.1002/eji.1830140407. [DOI] [PubMed] [Google Scholar]
  21. Thomson A. W., Moon D. K., Inoue Y., Geczy C. L., Nelson D. S. Modification of delayed-type hypersensitivity reactions to ovalbumin in cyclosporin A-treated guinea-pigs. Immunology. 1983 Feb;48(2):301–308. [PMC free article] [PubMed] [Google Scholar]
  22. Vassalli J. D., Hamilton J., Reich E. Macrophage plasminogen activator: induction by concanavalin A and phorbol myristate acetate. Cell. 1977 Jul;11(3):695–705. doi: 10.1016/0092-8674(77)90086-1. [DOI] [PubMed] [Google Scholar]
  23. Wagner H., Röllinghoff M., Schawaller R., Hardt C., Pfizenmaier K. T-cell-derived helper factor allows Lyt 123 thymocytes to differentiate into cytotoxic T lymphocytes. Nature. 1979 Aug 2;280(5721):405–406. doi: 10.1038/280405a0. [DOI] [PubMed] [Google Scholar]
  24. Wilkins J. A., Warrington R. J., Sigurdson S. L., Rutherford W. J. The demonstration of an interleukin-2 like activity in the synovial fluids of rheumatoid arthritis patients. J Rheumatol. 1983 Feb;10(1):109–113. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES