Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Jan 1;161(1):257–262. doi: 10.1084/jem.161.1.257

Interferon enhances the susceptibility of virus-infected fibroblasts to cytotoxic T cells

PMCID: PMC2187545  PMID: 2578543

Abstract

Interferon (IFN) pretreatment of low-passage mouse embryonic fibroblasts (MEF) infected with lymphocytic choriomeningitis virus or vaccinia virus rendered these cells two to three times more susceptible to lysis by H-2 restricted, virus-specific cytotoxic T lymphocytes (CTL) than control, virus-infected MEF. The increased sensitivity to lysis correlated with increased expression of surface H-2 antigens, but not viral antigens. Continuous cell lines already highly sensitive to CTL-mediated lysis and already expressing high levels of surface H-2 antigens were unaffected by IFN pretreatment. These results suggest that IFN treatment, by increasing surface H-2 levels, may result in increased association of surface H-2 and virus antigens, leading to enhanced recognition and lysis by virus-specific CTL.

Full Text

The Full Text of this article is available as a PDF (379.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biron C. A., Sonnenfeld G., Welsh R. M. Interferon induces natural killer cell blastogenesis in vivo. J Leukoc Biol. 1984 Jan;35(1):31–37. doi: 10.1002/jlb.35.1.31. [DOI] [PubMed] [Google Scholar]
  2. Biron C. A., Turgiss L. R., Welsh R. M. Increase in NK cell number and turnover rate during acute viral infection. J Immunol. 1983 Sep;131(3):1539–1545. [PubMed] [Google Scholar]
  3. Chang E. H., Mims S. J., Triche T. J., Friedman R. M. Interferon inhibits mouse leukaemia virus release: an electron microscope study. J Gen Virol. 1977 Feb;34(2):363–367. doi: 10.1099/0022-1317-34-2-363. [DOI] [PubMed] [Google Scholar]
  4. Cole G. A., Nathanson N., Prendergast R. A. Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature. 1972 Aug 11;238(5363):335–337. doi: 10.1038/238335a0. [DOI] [PubMed] [Google Scholar]
  5. Farrar W. L., Johnson H. M., Farrar J. J. Regulation of the production of immune interferon and cytotoxic T lymphocytes by interleukin 2. J Immunol. 1981 Mar;126(3):1120–1125. [PubMed] [Google Scholar]
  6. Huang K. Y., Donahoe R. M., Gordon F. B., Dressler H. R. Enhancement of phagocytosis by interferon-containing preparations. Infect Immun. 1971 Nov;4(5):581–588. doi: 10.1128/iai.4.5.581-588.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacobson S., Friedman R. M., Pfau C. J. Interferon induction by lymphocytic choriomeningitis viruses correlates with maximum virulence. J Gen Virol. 1981 Dec;57(Pt 2):275–283. doi: 10.1099/0022-1317-57-2-275. [DOI] [PubMed] [Google Scholar]
  8. Lindahl P., Gresser I., Leary P., Tovey M. Interferon treatment of mice: enhanced expression of histocompatibility antigens on lymphoid cells. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1284–1287. doi: 10.1073/pnas.73.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Morris A. G., Lin Y. L., Askonas B. A. Immune interferon release when a cloned cytotoxic T-cell line meets its correct influenza-infected target cell. Nature. 1982 Jan 14;295(5845):150–152. doi: 10.1038/295150a0. [DOI] [PubMed] [Google Scholar]
  10. Schultz R. M., Chirigos M. A. Selective neutralization by antiinterferon globulin of macrophage activation by L-cell interferon, Brucella abortus ether extract, Salmonella typhimurium lipopolysaccharide, and polyanions. Cell Immunol. 1979 Nov;48(1):52–58. doi: 10.1016/0008-8749(79)90098-4. [DOI] [PubMed] [Google Scholar]
  11. Selgrade M. J., Osborn J. E. Divergence of mouse brain interferon responses following virulent or avirulent Newcastle disease virus inoculation. Proc Soc Exp Biol Med. 1973 May;143(1):12–18. doi: 10.3181/00379727-143-37243. [DOI] [PubMed] [Google Scholar]
  12. Trinchieri G., Santoli D. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med. 1978 May 1;147(5):1314–1333. doi: 10.1084/jem.147.5.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Welsh R. M. Natural killer cells and interferon. Crit Rev Immunol. 1984;5(1):55–93. [PubMed] [Google Scholar]
  14. Wong G. H., Bartlett P. F., Clark-Lewis I., Battye F., Schrader J. W. Inducible expression of H-2 and Ia antigens on brain cells. Nature. 1984 Aug 23;310(5979):688–691. doi: 10.1038/310688a0. [DOI] [PubMed] [Google Scholar]
  15. Wong G. H., Clark-Lewis I., McKimm-Breschkin L., Harris A. W., Schrader J. W. Interferon-gamma induces enhanced expression of Ia and H-2 antigens on B lymphoid, macrophage, and myeloid cell lines. J Immunol. 1983 Aug;131(2):788–793. [PubMed] [Google Scholar]
  16. Zinkernagel R. M., Doherty P. C. H-2 compatability requirement for T-cell-mediated lysis of target cells infected with lymphocytic choriomeningitis virus. Different cytotoxic T-cell specificities are associated with structures coded for in H-2K or H-2D;. J Exp Med. 1975 Jun 1;141(6):1427–1436. doi: 10.1084/jem.141.6.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zinkernagel R. M., Welsh R. M. H-2 compatibility requirement for virus-specific T cell-mediated effector functions in vivo. I. Specificity of T cells conferring antiviral protection against lymphocytic choriomeningitis virus is associated with H-2K and H-2D. J Immunol. 1976 Nov;117(5 Pt 1):1495–1502. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES