Abstract
Alveolar macrophages (AM) from pathogen-free rabbits were unable to release reactive oxygen intermediates (ROI) unless they were conditioned in serum for 24-48 h before triggering with membrane-active agents. The degree of serum conditioning of AM depended upon the concentration of serum used; optimal ROI release was obtained at or above 7.5% fetal bovine serum (FBS). FBS, autologous rabbit serum, pooled rabbit serum, and pooled human serum were each capable of conditioning AM for release of ROI. Serum conditioning of AM requires synthesis of new protein(s); and the enzyme required for ROI production, NADPH oxidase, was only detectable in serum-conditioned cells. Moreover, serum-conditioned cells lost their ability to release ROI after transfer to serum-free medium, while cells maintained in serum-free medium acquired the capacity to release ROI after their transfer to serum-containing medium, demonstrating the reversibility of the phenomenon. Initial purification data indicate that conditioning is mediated by a discrete serum constituent, which precipitates 40-80% saturated ammonium sulfate, does not bind to Cibacron Blue columns, and has a molecular weight of 30,000 to 50,000, as determined by molecular exclusion chromatography. Unlike gamma interferon, which also enhances ROI release by macrophages, our serum-conditioning factor is not acid labile, retaining 67% of its activity after 120 min incubation at pH 2.0. Moreover, it does not appear to be a contaminating endotoxin, since LPS neither conditioned AM for ROI production, nor triggered ROI production by serum-conditioned AM. We propose that such a conditioning requirement may normally protect the lung against ROI-mediated tissue injury. However, during a pulmonary inflammatory reaction initiated by other mediator systems, the resulting transudation of plasma proteins into the alveolar spaces may condition AM in situ for ROI production.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernard J., Gee J. B., Khandwala A. S. Oxygen metabolism in the alveolar macrophage: friend and foe? J Reticuloendothel Soc. 1976 Apr;19(4):229–236. [PubMed] [Google Scholar]
- Bianco C., Eden A., Cohn Z. A. The induction of macrophage spreading: role of coagulation factors and the complement system. J Exp Med. 1976 Dec 1;144(6):1531–1544. doi: 10.1084/jem.144.6.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blasi E., Herberman R. B., Varesio L. Requirement for protein synthesis for induction of macrophage tumoricidal activity by IFN-alpha and IFN-beta but not by IFN-gamma. J Immunol. 1984 Jun;132(6):3226–3228. [PubMed] [Google Scholar]
- Chapman H. A., Jr, Hibbs J. B., Jr Modulation of macrophage tumoricidal capability by components of normal serum: a central role for lipid. Science. 1977 Jul 15;197(4300):282–285. doi: 10.1126/science.195338. [DOI] [PubMed] [Google Scholar]
- Freeman B. A., Crapo J. D. Biology of disease: free radicals and tissue injury. Lab Invest. 1982 Nov;47(5):412–426. [PubMed] [Google Scholar]
- Goldstein I. M., Roos D., Kaplan H. B., Weissmann G. Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis. J Clin Invest. 1975 Nov;56(5):1155–1163. doi: 10.1172/JCI108191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatch G. E., Gardner D. E., Menzel D. B. Chemiluminescence of phagocytic cells caused by N-formylmethionyl peptides. J Exp Med. 1978 Jan 1;147(1):182–195. doi: 10.1084/jem.147.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoidal J. R., Repine J. E., Beall G. D., Rasp F. L., Jr, White J. G. The effect of phorbol myristate acetate on the metabolism and ultrastructure of human alveolar macrophages. Am J Pathol. 1978 Jun;91(3):469–482. [PMC free article] [PubMed] [Google Scholar]
- Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsueh W., Jordan R. L., Harrison H. H., Cobb M. A. Serum and plasma stimulate prostaglandin production by alveolar macrophages. Prostaglandins. 1983 Jun;25(6):793–808. doi: 10.1016/0090-6980(83)90004-7. [DOI] [PubMed] [Google Scholar]
- Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakinuma K., Minakami S. Effects of fatty acids on superoxide radical generation in leukocytes. Biochim Biophys Acta. 1978 Jan 3;538(1):50–59. doi: 10.1016/0304-4165(78)90251-9. [DOI] [PubMed] [Google Scholar]
- Kaku M., Yagawa K., Nagao S., Tanaka A. Enhanced superoxide anion release from phagocytes by muramyl dipeptide or lipopolysaccharide. Infect Immun. 1983 Feb;39(2):559–564. doi: 10.1128/iai.39.2.559-564.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneda M., Kakinuma K., Yamaguchi T., Shimada K. Comparative studies on alveolar macrophages and polymorphonuclear leukocytes. II. The ability of guinea pig alveolar macrophages to produce H2O2. J Biochem. 1980 Oct;88(4):1159–1165. doi: 10.1093/oxfordjournals.jbchem.a133070. [DOI] [PubMed] [Google Scholar]
- Kleinschmidt W. J., Schultz R. M. Similarities of murine gamma interferon and the lymphokine that renders macrophages cytotoxic. J Interferon Res. 1982;2(2):291–299. doi: 10.1089/jir.1982.2.291. [DOI] [PubMed] [Google Scholar]
- Leonard E. J., Skeel A. Functional differences between resident and exudate peritoneal mouse macrophages: specific serum protein requirements for responsiveness to chemotaxins. J Reticuloendothel Soc. 1980 Nov;28(5):437–447. [PubMed] [Google Scholar]
- Metzger Z., Hoffeld J. T., Oppenheim J. J. Regulation by PGE2 of the production of oxygen intermediates by LPS-activated macrophages. J Immunol. 1981 Sep;127(3):1109–1113. [PubMed] [Google Scholar]
- Miles P. R., Castranova V., Lee P. Reactive forms of oxygen and chemiluminescence in phagocytizing rabbit alveolar macrophages. Am J Physiol. 1978 Sep;235(3):C103–C108. doi: 10.1152/ajpcell.1978.235.3.C103. [DOI] [PubMed] [Google Scholar]
- Musson R. A. Human serum induces maturation of human monocytes in vitro. Changes in cytolytic activity, intracellular lysosomal enzymes, and nonspecific esterase activity. Am J Pathol. 1983 Jun;111(3):331–340. [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan C. F., Root R. K. Hydrogen peroxide release from mouse peritoneal macrophages: dependence on sequential activation and triggering. J Exp Med. 1977 Dec 1;146(6):1648–1662. doi: 10.1084/jem.146.6.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pabst M. J., Johnston R. B., Jr Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide. J Exp Med. 1980 Jan 1;151(1):101–114. doi: 10.1084/jem.151.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pace J. L., Russell S. W., Schreiber R. D., Altman A., Katz D. H. Macrophage activation: priming activity from a T-cell hybridoma is attributable to interferon-gamma. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3782–3786. doi: 10.1073/pnas.80.12.3782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papermaster-Bender G., Whitcomb M. E., Sagone A. L., Jr Characterization of the metabolic responses of the human pulmonary alveolar macrophage. J Reticuloendothel Soc. 1980 Aug;28(2):129–139. [PubMed] [Google Scholar]
- Petrone W. F., English D. K., Wong K., McCord J. M. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1159–1163. doi: 10.1073/pnas.77.2.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pick E., Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38(1-2):161–170. doi: 10.1016/0022-1759(80)90340-3. [DOI] [PubMed] [Google Scholar]
- Pick E., Keisari Y. Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages--induction by multiple nonphagocytic stimuli. Cell Immunol. 1981 Apr;59(2):301–318. doi: 10.1016/0008-8749(81)90411-1. [DOI] [PubMed] [Google Scholar]
- Sasada M., Pabst M. J., Johnston R. B., Jr Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase. J Biol Chem. 1983 Aug 25;258(16):9631–9635. [PubMed] [Google Scholar]
- Simon P. L., Willoughby W. F. The role of subcellular factors in pulmonary immune function: physicochemical characterization of two distinct species of lymphocyte-activating factor produced by rabbit alveolar macrophages. J Immunol. 1981 Apr;126(4):1534–1541. [PubMed] [Google Scholar]
- Sugimoto M., Higuchi S., Ando M., Horio S., Tokuomi H. The effect of cytochalasin B on the superoxide production by alveolar macrophages obtained from normal rabbit lungs. J Reticuloendothel Soc. 1982 Feb;31(2):117–130. [PubMed] [Google Scholar]
- Sweeney T. D., Castranova V., Bowman L., Miles P. R. Factors which affect superoxide anion release from rat alveolar macrophages. Exp Lung Res. 1981 May;2(2):85–96. doi: 10.3109/01902148109052305. [DOI] [PubMed] [Google Scholar]
- Tsan M. F. Stimulation of the hexose monophosphate shunt independent of hydrogen peroxide and superoxide production in rabbit alveolar macrophages during phagocytosis. Blood. 1977 Nov;50(5):935–945. [PubMed] [Google Scholar]
- Tsunawaki S., Nathan C. F. Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes. J Biol Chem. 1984 Apr 10;259(7):4305–4312. [PubMed] [Google Scholar]
- Ward P. A., Duque R. E., Sulavik M. C., Johnson K. J. In vitro and in vivo stimulation of rat neutrophils and alveolar macrophages by immune complexes. Production of O-2 and H2O2. Am J Pathol. 1983 Mar;110(3):297–309. [PMC free article] [PubMed] [Google Scholar]
- Willoughby W. F., Willoughby J. B., Cantrell B. B., Wheelis R. In vivo responses to inhaled proteins. II. Induction of interstitial pneumonitis and enhancement of immune complex-mediated alveolitis by inhaled concanavalin A. Lab Invest. 1979 Mar;40(3):399–414. [PubMed] [Google Scholar]
- Willoughby W. F., Willoughby J. B. Immunologic mechanisms of parenchymal lung injury. Environ Health Perspect. 1984 Apr;55:239–257. doi: 10.1289/ehp.8455239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi T., Kakinuma K., Kaneda M., Shimada K. Comparative studies on alveolar macrophages and polymorphonuclear leukocytes. I. H2O2 and O2- generation by rabbit alveolar macrophages. J Biochem. 1980 May;87(5):1449–1455. doi: 10.1093/oxfordjournals.jbchem.a132886. [DOI] [PubMed] [Google Scholar]
- Zabucchi G., Berton G., Soranzo M. R. Mechanism of the potentiating effect of cytochalasin B on the respiratory burst induced by concanavalin A in leucocytes. FEBS Lett. 1981 Mar 23;125(2):165–169. doi: 10.1016/0014-5793(81)80710-7. [DOI] [PubMed] [Google Scholar]