Abstract
Human megakaryocytes were studied for phenotypic changes occurring throughout differentiation using a panel of monoclonal antibodies raised against marrow megakaryocytes and blood platelets. 11 monoclonal antibody preparations were selected for restricted specificity against megakaryocytes and/or platelets after screening by immunofluorescence, complement-mediated cytolysis, and solid phase enzyme-linked immunosorbent assay. The expression of the cellular epitopes recognized by these reagents enabled the identification of three levels of megakaryocyte maturation characterized by distinct immunologic phenotypes. Based upon their reactivities against megakaryocytic cells at different ontogenetic levels, monoclonal antibodies were operationally categorized into three groups. Group A consisted of six different monoclonal antibodies that recognized antigens on the colony- forming unit-megakaryocyte (CFU-Mk), in vitro grown colony megakaryocytes, and early immature marrow megakaryocytes, only, and did not detect their respective epitopes on either mature megakaryocytes or platelets. A monoclonal antibody categorized in group B detected a cell antigen expressed by megakaryocytic cells at all maturational levels, but which is lost or suppressed during terminal differentiation and is not expressed on blood platelets. Group C included four different monoclonal antibodies raised against platelets that recognized antigenic determinants expressed on the CFU-Mk, colony megakaryocytes, early and mature megakaryocytes, and platelets. Three group C monoclonal antibodies (PC-1, PC-3, and PC-4) were specific for platelet glycoprotein IIb/IIIa. Additionally, group C monoclonal antibody PC-2 was unique in that it showed partial reactivity against the clonable progenitor for the erythroid series (BFU-E). Recognition of discrete phenotypic changes in differentiating megakaryocytes will enable multiparameter analyses of these cells as well as the study of factors regulating the dynamics of megakaryocytopoiesis in health and disease.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aye M. T., Niho Y., Till J. E., McCulloch E. A. Studies of leukemic cell populations in culture. Blood. 1974 Aug;44(2):205–219. [PubMed] [Google Scholar]
- Bevan D., Rose M., Greaves M. Leukaemia of platelet precursors: diverse features in four cases. Br J Haematol. 1982 May;51(1):147–164. doi: 10.1111/j.1365-2141.1982.tb07299.x. [DOI] [PubMed] [Google Scholar]
- Bodger M. P., Izaguirre C. A., Blacklock H. A., Hoffbrand A. V. Surface antigenic determinants on human pluripotent and unipotent hematopoietic progenitor cells. Blood. 1983 May;61(5):1006–1010. [PubMed] [Google Scholar]
- Borsos T., Rapp H. J. Complement fixation on cell surfaces by 19S and 7S antibodies. Science. 1965 Oct 22;150(3695):505–506. doi: 10.1126/science.150.3695.505. [DOI] [PubMed] [Google Scholar]
- Breton-Gorius J., Guichard J. Ultrastructural localization of peroxidase activity in human platelets and megakaryocytes. Am J Pathol. 1972 Feb;66(2):277–293. [PMC free article] [PubMed] [Google Scholar]
- Breton-Gorius J., Reyes F. Ultrastructure of human bone marrow cell maturation. Int Rev Cytol. 1976;46:251–321. doi: 10.1016/s0074-7696(08)60993-6. [DOI] [PubMed] [Google Scholar]
- Burckhardt J. J., Anderson W. H., Kearney J. F., Cooper M. D. Human blood monocytes and platelets share a cell surface component. Blood. 1982 Sep;60(3):767–771. [PubMed] [Google Scholar]
- Civin C. I., Mirro J., Banquerigo M. L. My-1, new myeloid-specific antigen identified by a mouse monoclonal antibody. Blood. 1981 May;57(5):842–845. [PubMed] [Google Scholar]
- Damiani G., Zocchi E., Fabbi M., Bargellesi A., Patrone F. A monoclonal antibody to platelet glycoproteins IIb and IIIa complex: its use in purifying human megakaryocytes from sternal bone marrow aspirates for immunofluorescence studies of Ia-like antigens. Exp Hematol. 1983 Mar;11(3):169–177. [PubMed] [Google Scholar]
- Deng C. T., Terasaki P. I., Iwaki Y., Hofman F. M., Koeffler P., Cahan L., El Awar N., Billing R. A monoclonal antibody cross-reactive with human platelets, megakaryocytes, and common acute lymphocytic leukemia cells. Blood. 1983 Apr;61(4):759–764. [PubMed] [Google Scholar]
- DiPersio J. F., Brennan J. K., Lichtman M. A., Abboud C. N., Kirkpatrick F. H. The fractionation, characterization, and subcellular localization of colony-stimulating activities released by the human monocyte-like cell line, GCT. Blood. 1980 Oct;56(4):717–727. [PubMed] [Google Scholar]
- Ebbe S. Biology of megakaryocytes. Prog Hemost Thromb. 1976;3:211–229. [PubMed] [Google Scholar]
- Fauser A. A., Messner H. A. Identification of megakaryocytes, macrophages, and eosinophils in colonies of human bone marrow containing neurtophilic granulocytes and erythroblasts. Blood. 1979 May;53(5):1023–1027. [PubMed] [Google Scholar]
- Fitchen J. H., Foon K. A., Cline M. J. The antigenic characteristics of hematopoietic stem cells. N Engl J Med. 1981 Jul 2;305(1):17–25. doi: 10.1056/NEJM198107023050104. [DOI] [PubMed] [Google Scholar]
- Greaves M. F., Brown G. A human B lymphocyte specific antigen. Nat New Biol. 1973 Nov 28;246(152):116–119. doi: 10.1038/newbio246116a0. [DOI] [PubMed] [Google Scholar]
- Griffin J. D., Mayer R. J., Weinstein H. J., Rosenthal D. S., Coral F. S., Beveridge R. P., Schlossman S. F. Surface marker analysis of acute myeloblastic leukemia: identification of differentiation-associated phenotypes. Blood. 1983 Sep;62(3):557–563. [PubMed] [Google Scholar]
- Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
- Hara H., Ogawa M. Murine hemopoietic colonies in culture containing normoblasts, macrophages, and megakaryocytes. Am J Hematol. 1978;4(1):23–34. doi: 10.1002/ajh.2830040105. [DOI] [PubMed] [Google Scholar]
- Haynes B. F., Eisenbarth G. S., Fauci A. S. Human lymphocyte antigens: production of a monoclonal antibody that defines functional thymus-derived lymphocyte subsets. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5829–5833. doi: 10.1073/pnas.76.11.5829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hämmerling U., Chin A. F., Abbott J. Ontogeny of murine B lymphocytes: sequence of B-cell differentiation from surface-immunoglobulin-negative precursors to plasma cells. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2008–2012. doi: 10.1073/pnas.73.6.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen N., Broxmeyer H. E., Grossbard E., Moore M. A. Colony-forming units in diffusion chambers (CFU-d) and colony-forming units in agar culture (CFU-c) obtained from normal human bone marrow: a possible parent-progeny relationship. Cell Tissue Kinet. 1979 Mar;12(2):213–226. doi: 10.1111/j.1365-2184.1979.tb00127.x. [DOI] [PubMed] [Google Scholar]
- Jaffe E. A., Mosher D. F. Synthesis of fibronectin by cultured human endothelial cells. J Exp Med. 1978 Jun 1;147(6):1779–1791. doi: 10.1084/jem.147.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koeffler H. P., Billing R., Levine A. M., Golde D. W. Ia antigen is a differentiation marker on human eosinophils. Blood. 1980 Jul;56(1):11–14. [PubMed] [Google Scholar]
- Kung P., Goldstein G., Reinherz E. L., Schlossman S. F. Monoclonal antibodies defining distinctive human T cell surface antigens. Science. 1979 Oct 19;206(4416):347–349. doi: 10.1126/science.314668. [DOI] [PubMed] [Google Scholar]
- Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
- Leung L. L., Kinoshita T., Nachman R. L. Isolation, purification, and partial characterization of platelet membrane glycoproteins IIb and IIIa. J Biol Chem. 1981 Feb 25;256(4):1994–1997. [PubMed] [Google Scholar]
- Levine M. N., Fay J. W., Jones N. H., Metzgar R. S., Haynes B. F. Phenotypic characterization of human bone marrow granulocyte-macrophage forming progenitor cells. Blood. 1981 Nov;58(5):1047–1049. [PubMed] [Google Scholar]
- Levine R. F., Hazzard K. C., Lamberg J. D. The significance of megakaryocyte size. Blood. 1982 Nov;60(5):1122–1131. [PubMed] [Google Scholar]
- Lu L., Broxmeyer H. E., Meyers P. A., Moore M. A., Thaler H. T. Association of cell cycle expression of Ia-like antigenic determinations on normal human multipotential (CFU-GEMM) and erythroid (BFU-E) progenitor cells with regulation in vitro by acidic isoferritins. Blood. 1983 Feb;61(2):250–256. [PubMed] [Google Scholar]
- Lu L., Broxmeyer H. E. The selective enhancing influence of hemin and products of human erythrocytes on colony formation by human multipotential (CFUGEMM) and erythroid (BFUE) progenitor cells in vitro. Exp Hematol. 1983 Sep;11(8):721–729. [PubMed] [Google Scholar]
- Markovic O. S., Shulman N. R. Megakaryocyte maturation indicated by methanol inhibition of an acid phosphatase shared by magakaryocytes and platelets. Blood. 1977 Nov;50(5):905–914. [PubMed] [Google Scholar]
- Markwell M. A., Fox C. F. Surface-specific iodination of membrane proteins of viruses and eucaryotic cells using 1,3,4,6-tetrachloro-3alpha,6alpha-diphenylglycoluril. Biochemistry. 1978 Oct 31;17(22):4807–4817. doi: 10.1021/bi00615a031. [DOI] [PubMed] [Google Scholar]
- Mazur E. M., Hoffman R., Chasis J., Marchesi S., Bruno E. Immunofluorescent identification of human megakaryocyte colonies using an antiplatelet glycoprotein antiserum. Blood. 1981 Feb;57(2):277–286. [PubMed] [Google Scholar]
- McLaren K. M., Pepper D. S. Immunological localisation of beta-thromboglobulin and platelet factor 4 in human megakaryocytes and platelets. J Clin Pathol. 1982 Nov;35(11):1227–1231. doi: 10.1136/jcp.35.11.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLeod D. L., Shreeve M. M., Axelrad A. A. Chromosome marker evidence for the bipotentiality of BFU-E. Blood. 1980 Aug;56(2):318–322. [PubMed] [Google Scholar]
- McLeod D. L., Shreve M. M., Axelrad A. A. Induction of megakaryocyte colonies with platelet formation in vitro. Nature. 1976 Jun 10;261(5560):492–494. doi: 10.1038/261492a0. [DOI] [PubMed] [Google Scholar]
- Messner H. A., Jamal N., Izaguirre C. The growth of large megakaryocyte colonies from human bone marrow. J Cell Physiol Suppl. 1982;1:45–51. doi: 10.1002/jcp.1041130410. [DOI] [PubMed] [Google Scholar]
- Moore A., Ross G. D., Nachman R. L. Interaction of platelet membrane receptors with von Willebrand factor, ristocetin, and the Fc region of immunoglobulin G. J Clin Invest. 1978 Nov;62(5):1053–1060. doi: 10.1172/JCI109210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nachman R. L., Leung L. L. Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. J Clin Invest. 1982 Feb;69(2):263–269. doi: 10.1172/JCI110448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owen F. L., Fanger M. W. Studies on the human T-lymphocyte population. I. The development and characterization of a specific anti-human T-cell antibody. J Immunol. 1974 Oct;113(4):1128–1137. [PubMed] [Google Scholar]
- Pfueller S. L., Weber S., Lüscher E. F. Studies of the mechanism of the human platelet release reaction induced by immunologic stimuli. III. Relationship between the binding of soluble IgG aggregates to the Fc receptor and cell response in the presence and absence of plasma. J Immunol. 1977 Feb;118(2):514–524. [PubMed] [Google Scholar]
- Phillips D. R., Agin P. P. Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis. J Biol Chem. 1977 Mar 25;252(6):2121–2126. [PubMed] [Google Scholar]
- Pizzolo G., Chilosi M., Schiavon R., Ambrosetti A., Cetto G. L., Sabbioni R., Caramaschi G., Perona G. Detection of normal and malignant megakaryocytes by anti beta-thromboglobulin serum. An immunofluorescence study. Scand J Haematol. 1982 Sep;29(3):200–206. doi: 10.1111/j.1600-0609.1982.tb00583.x. [DOI] [PubMed] [Google Scholar]
- Polley M. J. Enhancement of hemolytic complement activity by treatment of human serum with iodine. J Immunol. 1971 Nov;107(5):1493–1495. [PubMed] [Google Scholar]
- Polley M. J., Müller-Eberhard H. J. Enharncement of the hemolytic activity of the second component of human complement by oxidation. J Exp Med. 1967 Dec 1;126(6):1013–1025. doi: 10.1084/jem.126.6.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabellino E. M., Levene R. B., Nachman R. L., Leung L. L. Human megakaryocytes. III. Characterization in myeloproliferative disorders. Blood. 1984 Mar;63(3):615–622. [PubMed] [Google Scholar]
- Rabellino E. M., Nachman R. L., Williams N., Winchester R. J., Ross G. D. Human megakaryocytes. I. Characterization of the membrane and cytoplasmic components of isolated marrow megakaryocytes. J Exp Med. 1979 Jun 1;149(6):1273–1287. doi: 10.1084/jem.149.6.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabellino E. M., Ross G. D., Trang H. T., Williams N., Metcalf D. Membrane receptors of mouse leukocytes. II. Sequential expression of membrane receptors and phagocytic capacity during leukocyte differentiation. J Exp Med. 1978 Feb 1;147(2):434–445. doi: 10.1084/jem.147.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinherz E. L., Kung P. C., Goldstein G., Levey R. H., Schlossman S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1588–1592. doi: 10.1073/pnas.77.3.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reske-Kunz A. B., Scheid M. P., Abbott J., Metakis L. J., Polley M. J., Boyse E. A. Action of complement in the lysis of mouse sarcoma cells sensitized with H-2 alloantibody. Transplantation. 1979 Aug;28(2):149–153. doi: 10.1097/00007890-197908000-00016. [DOI] [PubMed] [Google Scholar]
- Ryo R., Proffitt R. T., Poger M. E., O'Bear R., Deuel T. F. Platelet factor 4 antigen in megakaryocytes. Thromb Res. 1980 Mar 1;17(5):645–652. doi: 10.1016/0049-3848(80)90367-9. [DOI] [PubMed] [Google Scholar]
- Sieff C., Bicknell D., Caine G., Robinson J., Lam G., Greaves M. F. Changes in cell surface antigen expression during hemopoietic differentiation. Blood. 1982 Sep;60(3):703–713. [PubMed] [Google Scholar]
- Thiagarajan P., Perussia B., De Marco L., Wells K., Trinchieri G. Membrane proteins on human megakaryocytes and platelets identified by monoclonal antibodies. Am J Hematol. 1983 May;14(3):255–269. doi: 10.1002/ajh.2830140307. [DOI] [PubMed] [Google Scholar]
- Vainchenker W., Bouguet J., Guichard J., Breton-Gorius J. Megakaryocyte colony formation from human bone marrow precursors. Blood. 1979 Oct;54(4):940–945. [PubMed] [Google Scholar]
- Vinci G., Tabilio A., Deschamps J. F., Van Haeke D., Henri A., Guichard J., Tetteroo P., Lansdorp P. M., Hercend T., Vainchenker W. Immunological study of in vitro maturation of human megakaryocytes. Br J Haematol. 1984 Apr;56(4):589–605. doi: 10.1111/j.1365-2141.1984.tb02184.x. [DOI] [PubMed] [Google Scholar]
- Winchester R. J., Meyers P. A., Broxmeyer H. E., Wang C. Y., Moore M. A., Kunkel H. G. Inhibition of human erythropoietic colony formation in culture by treatment with Ia antisera. J Exp Med. 1978 Aug 1;148(2):613–618. doi: 10.1084/jem.148.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winchester R. J., Ross G. D., Jarowski C. I., Wang C. Y., Halper J., Broxmeyer H. E. Expression of Ia-like antigen molecules on human granulocytes during early phases of differentiation. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4012–4016. doi: 10.1073/pnas.74.9.4012. [DOI] [PMC free article] [PubMed] [Google Scholar]