Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 May 1;161(5):1029–1047. doi: 10.1084/jem.161.5.1029

Absence of the Lyt-2-,L3T4+ lineage of T cells in mice treated neonatally with anti-I-A correlates with absence of intrathymic I-A- bearing antigen-presenting cell function

PMCID: PMC2187596  PMID: 3921649

Abstract

In an effort to elucidate the role of intrathymic Ia-bearing antigen- presenting cells (APC) on the development of the class II-restricted T cell repertoire, we examined the effect of neonatal anti-I-A treatment on both intrathymic and splenic APC function; on the generation of Lyt- 2-,L3T4+, Lyt-2+,L3T4-, and Lyt-2+,L3T4+ T cells; and on the development of class I- and class II-specific T cell functions. Both the thymus and the spleen are completely devoid of Lyt-2-,L3T4+ T cells in young mice treated from birth with anti-I-A, and also lack functions associated with this subset, i.e., alloantigen-specific interleukin 2 production (present report), allo-class II-specific and self-class II- restricted T cell proliferative responses, and helper cell function for the generation of cytotoxic T lymphocyte responses (18). Development of the Lyt-2+,L3T4- subset proceeds undisturbed in these mice, in accord with the previously reported normal levels of cytotoxic T lymphocyte precursors (18). The thymus contains normal numbers of the immature cortical Lyt-2+,L3T4+ cells, indicating that acquisition of the L3T4 marker, in and of itself, is not influenced by anti-I-A treatment. This striking absence of the lineage of T cells responsible for class II- specific T cell functions is correlated with absence of thymic APC function for class II-restricted T cell clones. When anti-I-A-treated mice are allowed to recover from the antibody treatment, splenic and thymic APC function return to normal in 2-3 wk, and thymic Lyt-2-,L3T4+ T cell numbers and functions reappear before such cells are detectable in the spleen. Collectively, these findings suggest that development of the Lyt-2-,L3T4+ lineage of class II-specific T cells is entirely dependent on functional I-A-bearing APC cells in the thymus. In addition, the presence of normal levels of Lyt-2+,L3T4-T cells argues that generation of the two major subsets of T cells (i.e., Lyt-2+,L3T4- and Lyt-2-,L3T4+) occurs through separate events, involving unique sites of interactions between precursor T cells and nonlymphoid major histocompatibility complex-bearing thymus cells.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barclay A. N., Mayrhofer G. Bone marrow origin of Ia-positive cells in the medulla rat thymus. J Exp Med. 1981 Jun 1;153(6):1666–1671. doi: 10.1084/jem.153.6.1666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bottomly K., Janeway C. A., Jr, Mathieson B. J., Mosier D. E. Absence of an antigen-specific helper T cell required for the expression of the T 15 idiotype in mice treated with anti-mu antibody. Eur J Immunol. 1980 Feb;10(2):159–163. doi: 10.1002/eji.1830100217. [DOI] [PubMed] [Google Scholar]
  3. Bradley S. M., Kruisbeek A. M., Singer A. Cytotoxic T lymphocyte responses in allogeneic radiation bone marrow chimeras. The chimeric host strictly dictates the self-repertoire of Ia-restricted T cells but not H-2K/D-restricted T cells. J Exp Med. 1982 Dec 1;156(6):1650–1664. doi: 10.1084/jem.156.6.1650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ceredig R., Dialynas D. P., Fitch F. W., MacDonald H. R. Precursors of T cell growth factor producing cells in the thymus: ontogeny, frequency, and quantitative recovery in a subpopulation of phenotypically mature thymocytes defined by monoclonal antibody GK-1.5. J Exp Med. 1983 Nov 1;158(5):1654–1671. doi: 10.1084/jem.158.5.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ceredig R., Glasebrook A. L., MacDonald H. R. Phenotypic and functional properties of murine thymocytes. I. Precursors of cytolytic T lymphocytes and interleukin 2-producing cells are all contained within a subpopulation of "mature" thymocytes as analyzed by monoclonal antibodies and flow microfluorometry. J Exp Med. 1982 Feb 1;155(2):358–379. doi: 10.1084/jem.155.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ceredig R., Sekaly R. P., MacDonald H. R. Differentiation in vitro of Lyt 2+ thymocytes from embryonic Lyt 2- precursors. Nature. 1983 May 19;303(5914):248–250. doi: 10.1038/303248a0. [DOI] [PubMed] [Google Scholar]
  7. Click R. E., Benck L., Alter B. J. Immune responses in vitro. I. Culture conditions for antibody synthesis. Cell Immunol. 1972 Feb;3(2):264–276. doi: 10.1016/0008-8749(72)90165-7. [DOI] [PubMed] [Google Scholar]
  8. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  9. Dialynas D. P., Wilde D. B., Marrack P., Pierres A., Wall K. A., Havran W., Otten G., Loken M. R., Pierres M., Kappler J. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol Rev. 1983;74:29–56. doi: 10.1111/j.1600-065x.1983.tb01083.x. [DOI] [PubMed] [Google Scholar]
  10. Duijvestijn A. M., Hoefsmit E. C. Ultrastructure of the rat thymus: the micro-environment of T-lymphocyte maturation. Cell Tissue Res. 1981;218(2):279–292. doi: 10.1007/BF00210344. [DOI] [PubMed] [Google Scholar]
  11. Fultz M. J., Scher I., Finkelman F. D., Kincade P., Mond J. J. Neonatal suppression with anti-Ia antibody. I. Suppression of murine B lymphocyte development. J Immunol. 1982 Sep;129(3):992–995. [PubMed] [Google Scholar]
  12. Glimcher L. H., Schwartz R. H., Longo D. L., Singer A. The specificity of the syngeneic mixed leukocyte response, a primary anti-I region T cell proliferative response, is determined intrathymically. J Immunol. 1982 Sep;129(3):987–991. [PubMed] [Google Scholar]
  13. Hedrick S. M., Watson J. Genetic control of the immune response to collagen. II. Antibody responses produced in fetal liver restored radiation chimeras and thymus reconstituted F1 hybrid nude mice. J Exp Med. 1979 Sep 19;150(3):646–652. doi: 10.1084/jem.150.3.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hämmerling G. J., Hämmerling U., Flaherty L. Qat-4 and Qat-5, new murine T-cell antigens governed by the Tla region and identified by monoclonal antibodies. J Exp Med. 1979 Jul 1;150(1):108–116. doi: 10.1084/jem.150.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Janeway C. A., Jr, Conrad P. J., Lerner E. A., Babich J., Wettstein P., Murphy D. B. Monoclonal antibodies specific for Ia glycoproteins raised by immunization with activated T cells: possible role of T cellbound Ia antigens as targets of immunoregulatory T cells. J Immunol. 1984 Feb;132(2):662–667. [PubMed] [Google Scholar]
  16. Kelso A., Macdonald H. R. Precursor frequency analysis of lymphokine-secreting alloreactive T lymphocytes. Dissociation of subsets producing interleukin 2, macrophage-activating factor, and granulocyte-macrophage colony-stimulating factor on the basis of Lyt-2 phenotype. J Exp Med. 1982 Nov 1;156(5):1366–1379. doi: 10.1084/jem.156.5.1366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimoto M., Fathman C. G. Antigen-reactive T cell clones. I. Transcomplementing hybrid I-A-region gene products function effectively in antigen presentation. J Exp Med. 1980 Oct 1;152(4):759–770. doi: 10.1084/jem.152.4.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol. 1975 Jul;66(1):188–193. doi: 10.1083/jcb.66.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kruisbeek A. M., Davis M. L., Matis L. A., Longo D. L. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses. J Exp Med. 1984 Sep 1;160(3):839–857. doi: 10.1084/jem.160.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kruisbeek A. M., Fultz M. J., Sharrow S. O., Singer A., Mond J. J. Early development of the T cell repertoire. In vivo treatment of neonatal mice with anti-Ia antibodies interferes with differentiation of I-restricted T cells but not K/D-restricted T cells. J Exp Med. 1983 Jun 1;157(6):1932–1946. doi: 10.1084/jem.157.6.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kruisbeek A. M., Sharrow S. O., Mathieson B. J., Singer A. The H-2 phenotype of the thymus dictates the self-specificity expressed by thymic but not splenic cytotoxic T lymphocyte precursors in thymus-engrafted nude mice. J Immunol. 1981 Nov;127(5):2168–2176. [PubMed] [Google Scholar]
  22. Kruisbeek A. M., Sharrow S. O., Singer A. Differences in the MHC-restricted self-recognition repertoire of intra-thymic and extra-thymic cytotoxic T lymphocyte precursors. J Immunol. 1983 Mar;130(3):1027–1032. [PubMed] [Google Scholar]
  23. Krönke M., Scheurich P., Pfizenmaier K., Röllinghoff M., Wagner H. T-T cell interactions during in vitro cytotoxic T lymphocyte responses. V. Precursor frequencies and specificity of alloreactive helper T cells. J Exp Med. 1982 Jul 1;156(1):41–54. doi: 10.1084/jem.156.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lanier L. L., Gutman G. A., Lewis D. E., Griswold S. T., Warner N. L. Monoclonal antibodies against rat immunoglobulin kappa chains. Hybridoma. 1982;1(2):125–131. doi: 10.1089/hyb.1.1982.1.125. [DOI] [PubMed] [Google Scholar]
  25. Ledbetter J. A., Rouse R. V., Micklem H. S., Herzenberg L. A. T cell subsets defined by expression of Lyt-1,2,3 and Thy-1 antigens. Two-parameter immunofluorescence and cytotoxicity analysis with monoclonal antibodies modifies current views. J Exp Med. 1980 Aug 1;152(2):280–295. doi: 10.1084/jem.152.2.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Loken M. R., Herzenber L. A. Analysis of cell populations with a fluorescence-activated cell sorter. Ann N Y Acad Sci. 1975 Jun 30;254:163–171. doi: 10.1111/j.1749-6632.1975.tb29166.x. [DOI] [PubMed] [Google Scholar]
  27. Longo D. L., Davis M. L. Early appearance of donor-type antigen-presenting cells in the thymuses of 1200 R radiation-induced bone marrow chimeras correlates with self-recognition of donor I region gene products. J Immunol. 1983 Jun;130(6):2525–2527. [PubMed] [Google Scholar]
  28. Longo D. L., Schwartz R. H. Inhibition of antigen-induced proliferation of T cells from radiation-induced bone marrow chimeras by a monoclonal antibody directed against an Ia determinant on the antigen-presenting cell. Proc Natl Acad Sci U S A. 1981 Jan;78(1):514–518. doi: 10.1073/pnas.78.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. MacDonald H. R., Glasebrook A. L., Cerottini J. C. Clonal heterogeneity in the functional requirement for Lyt-2/3 molecules on cytolytic T lymphocytes: analysis by antibody blocking and selective trypsinization. J Exp Med. 1982 Dec 1;156(6):1711–1722. doi: 10.1084/jem.156.6.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Manohar V., Brown E., Leiserson W. M., Chused T. M. Expression of Lyt-1 by a subset of B lymphocytes. J Immunol. 1982 Aug;129(2):532–538. [PubMed] [Google Scholar]
  31. Marrack P., Endres R., Shimonkevitz R., Zlotnik A., Dialynas D., Fitch F., Kappler J. The major histocompatibility complex-restricted antigen receptor on T cells. II. Role of the L3T4 product. J Exp Med. 1983 Oct 1;158(4):1077–1091. doi: 10.1084/jem.158.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Martinez C., Pereira P., Bernabé R., Bandeira A., Larsson E. L., Cazenave P. A., Coutinho A. Internal complementarities in the immune system: regulation of the expression of helper T-cell idiotypes. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4520–4523. doi: 10.1073/pnas.81.14.4520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mathieson B. J., Fowlkes B. J. Cell surface antigen expression on thymocytes: development and phenotypic differentiation of intrathymic subsets. Immunol Rev. 1984 Dec;82:141–173. doi: 10.1111/j.1600-065x.1984.tb01121.x. [DOI] [PubMed] [Google Scholar]
  34. Miller R. A., Stutman O. Enumeration of IL 2-secreting helper T cells by limiting dilution analysis, and demonstration of unexpectedly high levels of IL 2 production per responding cell. J Immunol. 1982 May;128(5):2258–2264. [PubMed] [Google Scholar]
  35. Nakayama E., Shiku H., Stockert E., Oettgen H. F., Old L. J. Cytotoxic T cells: Lyt phenotype and blocking of killing activity by Lyt antisera. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1977–1981. doi: 10.1073/pnas.76.4.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pierres A., Naquet P., Van Agthoven A., Bekkhoucha F., Denizot F., Mishal Z., Schmitt-Verhulst A. M., Pierres M. A rat anti-mouse T4 monoclonal antibody (H129.19) inhibits the proliferation of Ia-reactive T cell clones and delineates two phenotypically distinct (T4+, Lyt-2,3-, and T4-, Lyt-2,3+) subsets among anti-Ia cytolytic T cell clones. J Immunol. 1984 Jun;132(6):2775–2782. [PubMed] [Google Scholar]
  37. Reichert R. A., Gallatin W. M., Butcher E. C., Weissman I. L. A homing receptor-bearing cortical thymocyte subset: implications for thymus cell migration and the nature of cortisone-resistant thymocytes. Cell. 1984 Aug;38(1):89–99. doi: 10.1016/0092-8674(84)90529-4. [DOI] [PubMed] [Google Scholar]
  38. Rock K. L., Benacerraf B. Thymic T cells are driven to expand upon interaction with self-class II major histocompatibility complex gene products on accessory cells. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1221–1224. doi: 10.1073/pnas.81.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ron Y., De Baetselier P., Gordon J., Feldman M., Segal S. Defective induction of antigen-reactive proliferating T cells in B cell-deprived mice. Eur J Immunol. 1981 Dec;11(12):964–968. doi: 10.1002/eji.1830111203. [DOI] [PubMed] [Google Scholar]
  40. Scollay R., Shortman K. Thymocyte subpopulations: an experimental review, including flow cytometric cross-correlations between the major murine thymocyte markers. Thymus. 1983 Sep;5(5-6):245–295. [PubMed] [Google Scholar]
  41. Shinohara N., Sachs D. H. Mouse alloantibodies capable of blocking cytotoxic T-cell function. I. Relationship between the antigen reactive with blocking antibodies and the Lyt-2 locus. J Exp Med. 1979 Sep 19;150(3):432–444. doi: 10.1084/jem.150.3.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Singer A., Hathcock K. S., Hodes R. J. Self recognition in allogeneic thymic chimeras. Self recognition by T helper cells from thymus-engrafted nude mice is restricted to the thymic H-2 haplotype. J Exp Med. 1982 Jan 1;155(1):339–344. doi: 10.1084/jem.155.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Swain S. L., Panfili P. R. Helper cells activated by allogeneic H-2K or H-2D differences have a Ly phenotype distinct from those responsive to I differences. J Immunol. 1979 Feb;122(2):383–391. [PubMed] [Google Scholar]
  44. Swain S. L. Significance of Lyt phenotypes: Lyt2 antibodies block activities of T cells that recognize class 1 major histocompatibility complex antigens regardless of their function. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7101–7105. doi: 10.1073/pnas.78.11.7101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sy M. S., Lowy A., HayGlass K., Janeway C. A., Jr, Gurish M., Greene M. I., Benacerraf B. Chronic treatment with rabbit anti-mouse mu-chain antibody alters the characteristic immunoglobulin heavy-chain restriction of murine suppressor T-cell factors. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3846–3850. doi: 10.1073/pnas.81.12.3846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981 Apr;126(4):1614–1619. [PubMed] [Google Scholar]
  47. Titus J. A., Haugland R., Sharrow S. O., Segal D. M. Texas Red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies. J Immunol Methods. 1982;50(2):193–204. doi: 10.1016/0022-1759(82)90225-3. [DOI] [PubMed] [Google Scholar]
  48. Van Vliet E., Melis M., Van Ewijk W. Monoclonal antibodies to stromal cell types of the mouse thymus. Eur J Immunol. 1984 Jun;14(6):524–529. doi: 10.1002/eji.1830140608. [DOI] [PubMed] [Google Scholar]
  49. Wagner H., Hardt C., Stockinger H., Pfizenmaier K., Bartlett R., Röllinghoff M. Impact of thymus on the generation of immunocompetence and diversity of antigen-specific MHC-restricted cytotoxic T-lymphocyte precursors. Immunol Rev. 1981;58:95–129. doi: 10.1111/j.1600-065x.1981.tb00351.x. [DOI] [PubMed] [Google Scholar]
  50. Wilde D. B., Marrack P., Kappler J., Dialynas D. P., Fitch F. W. Evidence implicating L3T4 in class II MHC antigen reactivity; monoclonal antibody GK1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding by cloned murine helper T lymphocyte lines. J Immunol. 1983 Nov;131(5):2178–2183. [PubMed] [Google Scholar]
  51. Zinkernagel R. M., Callahan G. N., Klein J., Dennert G. Cytotoxic T cells learn specificity for self H-2 during differentiation in the thymus. Nature. 1978 Jan 19;271(5642):251–253. doi: 10.1038/271251a0. [DOI] [PubMed] [Google Scholar]
  52. Zinkernagel R. M., Doherty P. C. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177. doi: 10.1016/s0065-2776(08)60262-x. [DOI] [PubMed] [Google Scholar]
  53. van Ewijk W., van Soest P. L., van den Engh G. J. Fluorescence analysis and anatomic distribution of mouse T lymphocyte subsets defined by monoclonal antibodies to the antigens Thy-1, Lyt-1, Lyt-2, and T-200. J Immunol. 1981 Dec;127(6):2594–2604. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES