Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 May 1;161(5):1169–1188. doi: 10.1084/jem.161.5.1169

Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2

PMCID: PMC2187617  PMID: 3886826

Abstract

Incubation of resting lymphoid cells with recombinant interleukin 2 (IL- 2) in vitro leads to the generation of lymphokine activated killer (LAK) cells capable of lysing fresh tumor cell suspensions in short- term chromium-release assays. Our previous studies (7) have demonstrated that the injection of LAK cells plus low doses of recombinant IL-2 were capable of inhibiting the growth of pulmonary metastases. We have now explored the ability of high doses of recombinant IL-2, administered systemically, to generate LAK cells in vivo, and to mediate antitumor effects directly. Administration of increasing doses of recombinant IL-2 intraperitoneally resulted in the generation of LAK cells in the spleens of recipient mice. Doses of 100,000 U recombinant IL-2 administered intraperitoneally approximately every 8 h for 5 d were capable of dramatically inhibiting established 3- d pulmonary metastases from the MCA-105 and MCA-106 syngeneic sarcomas and the syngeneic B16 melanoma in C57BL/6 mice. Grossly visible metastases present at 10 d after tumor injection also underwent regression following IL-2 therapy. Surprisingly, established 10 d pulmonary metastases were more susceptible to the effects of IL-2 than were the smaller 3 d pulmonary metastases. All antitumor effects of the systemic administration of recombinant IL-2 were eliminated if mice received prior treatment with 500 rad total body irradiation. The administration of high doses of recombinant IL-2 was also capable of inhibiting the growth of 3-d established subcutaneous tumors from the MCA-105 sarcoma, and of mediating the inhibition of growth and regression of established palpable subcutaneous MCA-105 sarcomas. Lymphocytes, which appeared morphologically to be activated, were present at the site of regressing tumor, and it appears that the mechanism of the antitumor effect of recombinant IL-2 administered systemically is via the generation of LAK cells in vivo, although this hypothesis remains to be proven. The ready availability of high doses of recombinant human IL-2, and the demonstration of antitumor effects seen in animal models have led us to the initiation of the clinical trials of recombinant IL-2 in humans.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang A. E., Hyatt C. L., Rosenberg S. A. Systemic administration of recombinant human interleukin-2 in mice. J Biol Response Mod. 1984 Oct;3(5):561–572. [PubMed] [Google Scholar]
  2. Cheever M. A., Greenberg P. D., Fefer A., Gillis S. Augmentation of the anti-tumor therapeutic efficacy of long-term cultured T lymphocytes by in vivo administration of purified interleukin 2. J Exp Med. 1982 Apr 1;155(4):968–980. doi: 10.1084/jem.155.4.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clason A. E., Duarte A. J., Kupiec-Weglinski J. W., Williams J. N., Wang B. S., Strom T. B., Tilney N. L. Restoration of allograft responsiveness in B rats by interleukin 2 and/or adherent cells. J Immunol. 1982 Jul;129(1):252–259. [PubMed] [Google Scholar]
  4. Donohue J. H., Rosenberg S. A. The fate of interleukin-2 after in vivo administration. J Immunol. 1983 May;130(5):2203–2208. [PubMed] [Google Scholar]
  5. Donohue J. H., Rosenstein M., Chang A. E., Lotze M. T., Robb R. J., Rosenberg S. A. The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J Immunol. 1984 Apr;132(4):2123–2128. [PubMed] [Google Scholar]
  6. GEHAN E. A. A GENERALIZED WILCOXON TEST FOR COMPARING ARBITRARILY SINGLY-CENSORED SAMPLES. Biometrika. 1965 Jun;52:203–223. [PubMed] [Google Scholar]
  7. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grimm E. A., Ramsey K. M., Mazumder A., Wilson D. J., Djeu J. Y., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. II. Precursor phenotype is serologically distinct from peripheral T lymphocytes, memory cytotoxic thymus-derived lymphocytes, and natural killer cells. J Exp Med. 1983 Mar 1;157(3):884–897. doi: 10.1084/jem.157.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Handa K., Suzuki R., Matsui H., Shimizu Y., Kumagai K. Natural killer (NK) cells as a responder to interleukin 2 (IL 2). II. IL 2-induced interferon gamma production. J Immunol. 1983 Feb;130(2):988–992. [PubMed] [Google Scholar]
  10. Hefeneider S. H., Conlon P. J., Henney C. S., Gillis S. In vivo interleukin 2 administration augments the generation of alloreactive cytolytic T lymphocytes and resident natural killer cells. J Immunol. 1983 Jan;130(1):222–227. [PubMed] [Google Scholar]
  11. Kawase I., Brooks C. G., Kuribayashi K., Olabuenaga S., Newman W., Gillis S., Henney C. S. Interleukin 2 induces gamma-interferon production: participation of macrophages and NK-like cells. J Immunol. 1983 Jul;131(1):288–292. [PubMed] [Google Scholar]
  12. Lotze M. T., Grimm E. A., Mazumder A., Strausser J. L., Rosenberg S. A. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 1981 Nov;41(11 Pt 1):4420–4425. [PubMed] [Google Scholar]
  13. Mazumder A., Grimm E. A., Rosenberg S. A. Lysis of fresh human solid tumor cells by autologous lymphocytes activated in vitro by allosensitization. Cancer Immunol Immunother. 1983;15(1):1–10. doi: 10.1007/BF00199454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mazumder A., Grimm E. A., Zhang H. Z., Rosenberg S. A. Lysis of fresh human solid tumors by autologous lymphocytes activated in vitro with lectins. Cancer Res. 1982 Mar;42(3):913–918. [PubMed] [Google Scholar]
  15. Mazumder A., Rosenberg S. A. Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. J Exp Med. 1984 Feb 1;159(2):495–507. doi: 10.1084/jem.159.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Merluzzi V. J., Kenney R. E., Schmid F. A., Choi Y. S., Faanes R. B. Recovery of the in vivo cytotoxic T-cell response in cyclophosphamide-treated mice by injection of mixed-lymphocyte-culture supernatants. Cancer Res. 1981 Sep;41(9 Pt 1):3663–3665. [PubMed] [Google Scholar]
  17. Morgan D. A., Ruscetti F. W., Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976 Sep 10;193(4257):1007–1008. doi: 10.1126/science.181845. [DOI] [PubMed] [Google Scholar]
  18. Mulé J. J., Shu S., Schwarz S. L., Rosenberg S. A. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science. 1984 Sep 28;225(4669):1487–1489. doi: 10.1126/science.6332379. [DOI] [PubMed] [Google Scholar]
  19. Pearlstein K. T., Palladino M. A., Welte K., Vilcek J. Purified human interleukin-2 enhances induction of immune interferon. Cell Immunol. 1983 Aug;80(1):1–9. doi: 10.1016/0008-8749(83)90088-6. [DOI] [PubMed] [Google Scholar]
  20. Reimann J., Diamantstein T. Interleukin-2 allows in vivo induction of anti-erythrocyte autoantibody production in nude mice associated with the injection of rat erythrocytes. Clin Exp Immunol. 1981 Mar;43(3):641–644. [PMC free article] [PubMed] [Google Scholar]
  21. Robb R. J., Munck A., Smith K. A. T cell growth factor receptors. Quantitation, specificity, and biological relevance. J Exp Med. 1981 Nov 1;154(5):1455–1474. doi: 10.1084/jem.154.5.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosenberg S. A., Grimm E. A., McGrogan M., Doyle M., Kawasaki E., Koths K., Mark D. F. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science. 1984 Mar 30;223(4643):1412–1414. doi: 10.1126/science.6367046. [DOI] [PubMed] [Google Scholar]
  23. Rosenberg S. A., Spiess P. J., Schwarz S. In vitro growth of murine T cells. I. Production of factors necessary for T cell growth. J Immunol. 1978 Nov;121(5):1946–1950. [PubMed] [Google Scholar]
  24. Rosenberg S. A., Spiess P. J., Schwarz S. In vivo administration of Interleukin-2 enhances specific alloimmune responses. Transplantation. 1983 Jun;35(6):631–634. doi: 10.1097/00007890-198306000-00024. [DOI] [PubMed] [Google Scholar]
  25. Rosenstein M., Yron I., Kaufmann Y., Rosenberg S. A. Lymphokine-activated killer cells: lysis of fresh syngeneic natural killer-resistant murine tumor cells by lymphocytes cultured in interleukin 2. Cancer Res. 1984 May;44(5):1946–1953. [PubMed] [Google Scholar]
  26. Strausser J. L., Mazumder A., Grimm E. A., Lotze M. T., Rosenberg S. A. Lysis of human solid tumors by autologous cells sensitized in vitro to alloantigens. J Immunol. 1981 Jul;127(1):266–271. [PubMed] [Google Scholar]
  27. Stötter H., Rüde E., Wagner H. T cell factor (interleukin 2) allows in vivo induction of T helper cells against heterologous erythrocytes in athymic (nu/nu) mice. Eur J Immunol. 1980 Sep;10(9):719–722. doi: 10.1002/eji.1830100912. [DOI] [PubMed] [Google Scholar]
  28. Wexler H. Accurate identification of experimental pulmonary metastases. J Natl Cancer Inst. 1966 Apr;36(4):641–645. doi: 10.1093/jnci/36.4.641. [DOI] [PubMed] [Google Scholar]
  29. Yron I., Wood T. A., Jr, Spiess P. J., Rosenberg S. A. In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol. 1980 Jul;125(1):238–245. [PubMed] [Google Scholar]
  30. Zarling J. M., Robins H. I., Raich P. C., Bach F. H., Bach M. L. Generation of cytotoxic T lymphocytes to autologous human leukaemia cells by sensitisation to pooled allogeneic normal cells. Nature. 1978 Jul 20;274(5668):269–271. doi: 10.1038/274269a0. [DOI] [PubMed] [Google Scholar]
  31. Zielske J. V., Golub S. H. Fetal calf serum-induced blastogenic and cytotoxic responses of human lymphocytes. Cancer Res. 1976 Oct;36(10):3842–3846. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES