Abstract
The simultaneous injection of monoclonal antibody 9.2.27, directed against a chondroitin sulfate proteoglycan preferentially expressed on human melanoma cells, and 2 X 10(7) mononuclear splenocytes, eradicated established, progressively growing human melanoma tumors in nude mice. Neither splenocytes nor antibody alone achieved significant tumor regression. The cells responsible for tumor elimination are most likely natural killer (NK) cells: they are present in splenocytes of T cell- deficient nude mice, and cloned cells with NK activity are able to suppress tumor growth. Moreover, splenocytes treated with anti-asialo GM1 and complement or harvested from NK-deficient C57BL/6 beige mice did not cause tumor rejection. Furthermore, treatment of BALB/c nude mice just before injection with anti-asialo GM1 antiserum, which is known to eliminate NK activity in vivo, resulted in better tumor growth. In addition, evidence is presented that cells with NK activity are probably the effectors responsible for melanoma target cell lysis in vitro: Antibody-dependent and -independent cell-mediated lysis of M21 melanoma cells was suppressed when splenocytes were preincubated with complement and antibodies specific for cell surface antigens of NK cells, i.e., anti-asialo GM1, anti-Qa5, and anti-NK1.1. Moreover, splenocytes of C57BL/6 beige mice were not able to lyse M21 cells in vitro. These results strongly support the conclusion that cells with NK activity are indeed responsible for the antibody-dependent destruction of M21 melanoma cells in vivo and in vitro.
Full Text
The Full Text of this article is available as a PDF (660.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradley T. P., Bonavida B. Mechanism of cell-mediated cytotoxicity at the single cell level. IV. Natural killing and antibody-dependent cellular cytotoxicity can be mediated by the same human effector cell as determined by the two-target conjugate assay. J Immunol. 1982 Nov;129(5):2260–2265. [PubMed] [Google Scholar]
- Bumol T. F., Reisfeld R. A. Unique glycoprotein-proteoglycan complex defined by monoclonal antibody on human melanoma cells. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1245–1249. doi: 10.1073/pnas.79.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bumol T. F., Wang Q. C., Reisfeld R. A., Kaplan N. O. Monoclonal antibody and an antibody-toxin conjugate to a cell surface proteoglycan of melanoma cells suppress in vivo tumor growth. Proc Natl Acad Sci U S A. 1983 Jan;80(2):529–533. doi: 10.1073/pnas.80.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chun M., Pasanen V., Hämmerling U., Hämmerling G. F., Hoffmann M. K. Tumor necrosis serum induces a serologically distinct population of NK cells. J Exp Med. 1979 Sep 19;150(3):426–431. doi: 10.1084/jem.150.3.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
- Habu S., Fukui H., Shimamura K., Kasai M., Nagai Y., Okumura K., Tamaoki N. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol. 1981 Jul;127(1):34–38. [PubMed] [Google Scholar]
- Herlyn D. M., Steplewski Z., Herlyn M. F., Koprowski H. Inhibition of growth of colorectal carcinoma in nude mice by monoclonal antibody. Cancer Res. 1980 Mar;40(3):717–721. [PubMed] [Google Scholar]
- Herlyn D., Koprowski H. IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector cells. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4761–4765. doi: 10.1073/pnas.79.15.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasai M., Yoneda T., Habu S., Maruyama Y., Okumura K., Tokunaga T. In vivo effect of anti-asialo GM1 antibody on natural killer activity. Nature. 1981 May 28;291(5813):334–335. doi: 10.1038/291334a0. [DOI] [PubMed] [Google Scholar]
- Koo G. C., Jacobson J. B., Hammerling G. J., Hammerling U. Antigenic profile of murine natural killer cells. J Immunol. 1980 Sep;125(3):1003–1006. [PubMed] [Google Scholar]
- Lattime E. C., Pecoraro G. A., Stutman O. Natural cytotoxic cells against solid tumors in mice. III. A comparison of effector cell antigenic phenotype and target cell recognition structures with those of NK cells. J Immunol. 1981 May;126(5):2011–2014. [PubMed] [Google Scholar]
- Lotzová E., Savary C. A., Pollack S. B. Prevention of rejection of allogeneic bone marrow transplants by NK 1.1 antiserum. Transplantation. 1983 May;35(5):490–494. doi: 10.1097/00007890-198305000-00019. [DOI] [PubMed] [Google Scholar]
- Lust J. A., Kumar V., Burton R. C., Bartlett S. P., Bennett M. Heterogeneity of natural killer cells in the mouse. J Exp Med. 1981 Aug 1;154(2):306–317. doi: 10.1084/jem.154.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minato N., Reid L., Bloom B. R. On the heterogeneity of murine natural killer cells. J Exp Med. 1981 Sep 1;154(3):750–762. doi: 10.1084/jem.154.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojo E., Wigzell H. Natural killer cells may be the only cells in normal mouse lymphoid cell populations endowed with cytolytic ability for antibody-coated tumour target cells. Scand J Immunol. 1978 Apr;7(4):297–306. doi: 10.1111/j.1365-3083.1978.tb00457.x. [DOI] [PubMed] [Google Scholar]
- Pollack S. B., Hallenbeck L. A. In vivo reduction of NK activity with anti-NK 1 serum: direct evaluation of NK cells in tumor clearance. Int J Cancer. 1982 Feb 15;29(2):203–207. doi: 10.1002/ijc.2910290215. [DOI] [PubMed] [Google Scholar]
- Roder J. C., Lohmann-Matthes M. L., Domzig W., Wigzell H. The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J Immunol. 1979 Nov;123(5):2174–2181. [PubMed] [Google Scholar]
- Roder J. C. The beige mutation in the mouse. I. A stem cell predetermined impairment in natural killer cell function. J Immunol. 1979 Nov;123(5):2168–2173. [PubMed] [Google Scholar]
- Santoni A., Herberman R. B., Holden H. T. Correlation between natural and antibody-dependent cell-mediated cytotoxicity against tumor targets in the mouse. I. Distribution of the reactivity. J Natl Cancer Inst. 1979 Jan;62(1):109–116. [PubMed] [Google Scholar]
- Scheinberg D. A., Strand M. Leukemic cell targeting and therapy by monoclonal antibody in a mouse model system. Cancer Res. 1982 Jan;42(1):44–49. [PubMed] [Google Scholar]
- Schulz G., Bumol T. F., Reisfeld R. A. Monoclonal antibody-directed effector cells selectively lyse human melanoma cells in vitro and in vivo. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5407–5411. doi: 10.1073/pnas.80.17.5407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stutman O., Cuttito M. J. Normal levels of natural cytotoxic cells against solid tumours in NK-deficient beige mice. Nature. 1981 Mar 19;290(5803):254–257. doi: 10.1038/290254a0. [DOI] [PubMed] [Google Scholar]
- Warner J. F., Dennert G. Bone marrow graft rejection as a function of antibody-directed natural killer cells. J Exp Med. 1985 Mar 1;161(3):563–576. doi: 10.1084/jem.161.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young W. W., Jr, Hakomori S. I. Therapy of mouse lymphoma with monoclonal antibodies to glycolipid: selection of low antigenic variants in vivo. Science. 1981 Jan 30;211(4481):487–489. doi: 10.1126/science.7455688. [DOI] [PubMed] [Google Scholar]
- de Landazuri M. O., Silva A., Alvarez J., Herberman R. B. Evidence that natural cytotoxicity and antibody-dependent cellular cytotoxicity are mediated in humans by the same effector cell populations. J Immunol. 1979 Jul;123(1):252–258. [PubMed] [Google Scholar]