Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Jan 1;171(1):173–188. doi: 10.1084/jem.171.1.173

Interleukin 2-induced proliferation of murine natural killer cells in vivo

PMCID: PMC2187657  PMID: 1688606

Abstract

The growth factor, IL-2, was administered to mice to evaluate the in vivo responsiveness of NK cells to this factor. The immediate effects of this factor on NK cells were determined by examining cytotoxic activity at 18-24 h after a single treatment with rIL-2. Although moderate doses of rIL-2 (3 x 10(4) U) could be shown to activate existing cytotoxic cells on a per cell basis, higher doses (10(6) U) were required to elicit blast size killer cells. The elicited killer cells were characterized as NK cells by the following criteria: (a) they were readily induced in athymic mice; (b) they mediated killing of NK-sensitive YAC-1 target cells but not NK-resistant P815 target cells; and (c) they expressed the NK cell determinants asialo ganglio-n- tetraosylceramide and NK1.1, but not the T cell determinants CD3, L3T4, or Lyt-2. High-dose IL-2 treatment induced not only the appearance of blast size NK cells, but also the expansion of this population. After treatments, the number of large granular lymphocytes and the number of NK1.1+ cells were increased at least twofold. Analysis of DNA content within the NK1.1+ cell subset demonstrated that IL-2 preferentially drove NK1.1+ cells into S and G2/M phases of the cell cycle. The in vivo elicited blast lymphocytes were examined by Northern blot analysis and in situ hybridization for expression of the IL-2-R p55 alpha chain gene. As previous work from this laboratory has demonstrated that NK cells proliferate in response to IFNs and IFN inducers in vivo, blast lymphocytes were also prepared after IFN treatments. The NK cells were not induced to express detectable levels of the alpha chain gene under any of the conditions examined. Blast T lymphocytes, isolated at times during viral infections when IL-2 production can be demonstrated in vitro, were induced to transcribe the alpha chain gene. Treatments of euthymic mice with high-dose IL-2 also induced transcription of the alpha chain gene in 41% of the non-B blast lymphocytes, but only background percentages of the NK1.1+ cells expressed the alpha chain gene. Transcription of the alpha chain gene was not induced in the NK cell-abundant athymic mice after IL-2 treatment. All of the in vivo elicited blast lymphocytes were induced to express IFN-gamma. Taken together, these data definitively demonstrate that IL-2 can induce NK cell proliferation and expansion in vivo. They also show that exposure to IL-2 in vivo, either by administration or endogenous production of the factor, induces transcription of the IL-2-R alpha chain gene in populations of cells containing T cell subsets. The results suggest, however, that murine NK cells are not induced to express high levels of the alpha chain gene in response to IL-2 in vivo.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo T., Cooper M. D., Balch C. M. Characterization of HNK-1+ (Leu-7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capability. J Immunol. 1982 Oct;129(4):1752–1757. [PubMed] [Google Scholar]
  2. Anegón I., Cuturi M. C., Trinchieri G., Perussia B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med. 1988 Feb 1;167(2):452–472. doi: 10.1084/jem.167.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bich-Thuy L. T., Dukovich M., Peffer N. J., Fauci A. S., Kehrl J. H., Greene W. C. Direct activation of human resting T cells by IL 2: the role of an IL 2 receptor distinct from the Tac protein. J Immunol. 1987 Sep 1;139(5):1550–1556. [PubMed] [Google Scholar]
  4. Biron C. A., Natuk R. J., Welsh R. M. Generation of large granular T lymphocytes in vivo during viral infection. J Immunol. 1986 Mar 15;136(6):2280–2286. [PubMed] [Google Scholar]
  5. Biron C. A., Pedersen K. F., Welsh R. M. Purification and target cell range of in vivo elicited blast natural killer cells. J Immunol. 1986 Jul 15;137(2):463–471. [PubMed] [Google Scholar]
  6. Biron C. A., Sonnenfeld G., Welsh R. M. Interferon induces natural killer cell blastogenesis in vivo. J Leukoc Biol. 1984 Jan;35(1):31–37. doi: 10.1002/jlb.35.1.31. [DOI] [PubMed] [Google Scholar]
  7. Biron C. A., Welsh R. M. Blastogenesis of natural killer cells during viral infection in vivo. J Immunol. 1982 Dec;129(6):2788–2795. [PubMed] [Google Scholar]
  8. Biron C. A., van den Elsen P., Tutt M. M., Medveczky P., Kumar V., Terhorst C. Murine natural killer cells stimulated in vivo do not express the T cell receptor alpha, beta, gamma, T3 delta, or T3 epsilon genes. J Immunol. 1987 Sep 1;139(5):1704–1710. [PubMed] [Google Scholar]
  9. Bruce J., Symington F. W., McKearn T. J., Sprent J. A monoclonal antibody discriminating between subsets of T and B cells. J Immunol. 1981 Dec;127(6):2496–2501. [PubMed] [Google Scholar]
  10. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  11. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  12. Herberman R. B., Nunn M. E., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975 Aug 15;16(2):216–229. doi: 10.1002/ijc.2910160204. [DOI] [PubMed] [Google Scholar]
  13. Itoh K., Suzuki R., Umezu Y., Hanaumi K., Kumagai K. Studies of murine large granular lymphocytes. II. Tissue, strain, and age distributions of LGL and LAL. J Immunol. 1982 Jul;129(1):395–405. [PubMed] [Google Scholar]
  14. Kasaian M. T., Biron C. A. The activation of IL-2 transcription in L3T4+ and Lyt-2+ lymphocytes during virus infection in vivo. J Immunol. 1989 Feb 15;142(4):1287–1292. [PubMed] [Google Scholar]
  15. Kiessling R., Klein E., Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975 Feb;5(2):112–117. doi: 10.1002/eji.1830050208. [DOI] [PubMed] [Google Scholar]
  16. Koo G. C., Peppard J. R. Establishment of monoclonal anti-Nk-1.1 antibody. Hybridoma. 1984 Fall;3(3):301–303. doi: 10.1089/hyb.1984.3.301. [DOI] [PubMed] [Google Scholar]
  17. Kornbluth J., Hoover R. G. Changes in gene expression associated with IFN-beta and IL-2-induced augmentation of human natural killer cell function. J Immunol. 1988 Nov 1;141(9):3234–3240. [PubMed] [Google Scholar]
  18. Kumagai K., Itoh K., Suzuki R., Hinuma S., Saitoh F. Studies of murine large granular lymphocytes. I. Identification as effector cells in NK and K cytotoxicities. J Immunol. 1982 Jul;129(1):388–394. [PubMed] [Google Scholar]
  19. Lanier L. L., Benike C. J., Phillips J. H., Engleman E. G. Recombinant interleukin 2 enhanced natural killer cell-mediated cytotoxicity in human lymphocyte subpopulations expressing the Leu 7 and Leu 11 antigens. J Immunol. 1985 Feb;134(2):794–801. [PubMed] [Google Scholar]
  20. Lanier L. L., Cwirla S., Federspiel N., Phillips J. H. Human natural killer cells isolated from peripheral blood do not rearrange T cell antigen receptor beta chain genes. J Exp Med. 1986 Jan 1;163(1):209–214. doi: 10.1084/jem.163.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LeBlanc P. A., Biron C. A. Mononuclear phagocyte maturation: a cytotoxic monoclonal antibody reactive with postmonoblast stages. Cell Immunol. 1984 Feb;83(2):242–254. doi: 10.1016/0008-8749(84)90303-4. [DOI] [PubMed] [Google Scholar]
  22. Lowenthal J. W., Greene W. C. Contrasting interleukin 2 binding properties of the alpha (p55) and beta (p70) protein subunits of the human high-affinity interleukin 2 receptor. J Exp Med. 1987 Oct 1;166(4):1156–1161. doi: 10.1084/jem.166.4.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Migliorati G., Cannarile L., Herberman R. B., Bartocci A., Stanley E. R., Riccardi C. Role of interleukin 2 (IL 2) and hemopoietin-1 (H-1) in the generation of mouse natural killer (NK) cells from primitive bone marrow precursors. J Immunol. 1987 Jun 1;138(11):3618–3625. [PubMed] [Google Scholar]
  24. Miller J., Malek T. R., Leonard W. J., Greene W. C., Shevach E. M., Germain R. N. Nucleotide sequence and expression of a mouse interleukin 2 receptor cDNA. J Immunol. 1985 Jun;134(6):4212–4217. [PubMed] [Google Scholar]
  25. Natuk R. J., Welsh R. M. Chemotactic effect of human recombinant interleukin 2 on mouse activated large granular lymphocytes. J Immunol. 1987 Oct 15;139(8):2737–2743. [PubMed] [Google Scholar]
  26. Ortaldo J. R., Mason A. T., Gerard J. P., Henderson L. E., Farrar W., Hopkins R. F., 3rd, Herberman R. B., Rabin H. Effects of natural and recombinant IL 2 on regulation of IFN gamma production and natural killer activity: lack of involvement of the Tac antigen for these immunoregulatory effects. J Immunol. 1984 Aug;133(2):779–783. [PubMed] [Google Scholar]
  27. Piguet P. F., Grau G., Irle C., Vassalli P. Administration of recombinant interleukin 2 to mice enhances production of hemopoietic and natural killer cells. Eur J Immunol. 1986 Oct;16(10):1257–1261. doi: 10.1002/eji.1830161012. [DOI] [PubMed] [Google Scholar]
  28. Portoles P., Rojo J., Golby A., Bonneville M., Gromkowski S., Greenbaum L., Janeway C. A., Jr, Murphy D. B., Bottomly K. Monoclonal antibodies to murine CD3 epsilon define distinct epitopes, one of which may interact with CD4 during T cell activation. J Immunol. 1989 Jun 15;142(12):4169–4175. [PubMed] [Google Scholar]
  29. Riccardi C., Giampietri A., Migliorati G., Cannarile L., D'Adamio L., Herberman R. B. Generation of mouse natural killer (NK) cell activity: effect of interleukin-2 (IL-2) and interferon (IFN) on the in vivo development of natural killer cells from bone marrow (BM) progenitor cells. Int J Cancer. 1986 Oct 15;38(4):553–562. doi: 10.1002/ijc.2910380416. [DOI] [PubMed] [Google Scholar]
  30. Saragovi H., Malek T. R. Direct identification of the murine IL-2 receptor p55-p75 heterodimer in the absence of IL-2. J Immunol. 1988 Jul 15;141(2):476–482. [PubMed] [Google Scholar]
  31. Sarmiento M., Dialynas D. P., Lancki D. W., Wall K. A., Lorber M. I., Loken M. R., Fitch F. W. Cloned T lymphocytes and monoclonal antibodies as probes for cell surface molecules active in T cell-mediated cytolysis. Immunol Rev. 1982;68:135–169. doi: 10.1111/j.1600-065x.1982.tb01063.x. [DOI] [PubMed] [Google Scholar]
  32. Sharon M., Klausner R. D., Cullen B. R., Chizzonite R., Leonard W. J. Novel interleukin-2 receptor subunit detected by cross-linking under high-affinity conditions. Science. 1986 Nov 14;234(4778):859–863. doi: 10.1126/science.3095922. [DOI] [PubMed] [Google Scholar]
  33. Shortman K., Wilson A., Scollay R., Chen W. F. Development of large granular lymphocytes with anomalous, nonspecific cytotoxicity in clones derived from Ly-2+ T cells. Proc Natl Acad Sci U S A. 1983 May;80(9):2728–2732. doi: 10.1073/pnas.80.9.2728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Solomon F. R., Higgins T. J. A monoclonal antibody with reactivity to asialo GM1 and murine natural killer cells. Mol Immunol. 1987 Jan;24(1):57–65. doi: 10.1016/0161-5890(87)90111-8. [DOI] [PubMed] [Google Scholar]
  35. Suzuki R., Handa K., Itoh K., Kumagai K. Natural killer (NK) cells as a responder to interleukin 2 (IL 2). I. Proliferative response and establishment of cloned cells. J Immunol. 1983 Feb;130(2):981–987. [PubMed] [Google Scholar]
  36. Timonen T., Ranki A., Saksela E., Häyry P. Human natural cell-mediated cytotoxicity against fetal fibroblasts. III. Morphological and functional characterization of the effector cells. Cell Immunol. 1979 Nov;48(1):121–132. doi: 10.1016/0008-8749(79)90105-9. [DOI] [PubMed] [Google Scholar]
  37. Trinchieri G., Matsumoto-Kobayashi M., Clark S. C., Seehra J., London L., Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984 Oct 1;160(4):1147–1169. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tsudo M., Goldman C. K., Bongiovanni K. F., Chan W. C., Winton E. F., Yagita M., Grimm E. A., Waldmann T. A. The p75 peptide is the receptor for interleukin 2 expressed on large granular lymphocytes and is responsible for the interleukin 2 activation of these cells. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5394–5398. doi: 10.1073/pnas.84.15.5394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tutt M. M., Schuler W., Kuziel W. A., Tucker P. W., Bennett M., Bosma M. J., Kumar V. T cell receptor genes do not rearrange or express functional transcripts in natural killer cells of scid mice. J Immunol. 1987 Apr 1;138(7):2338–2344. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES