Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Jan 1;171(1):141–157. doi: 10.1084/jem.171.1.141

Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action

PMCID: PMC2187663  PMID: 2136906

Abstract

The cellular basis of the specific unresponsiveness that develops in DA rats treated with cyclosporine (CSA) for 10 d after grafting a PVG heart was examined using an adoptive transfer assay. CD4+ cells from rats with long survival grafts specifically lack the capacity to restore PVG heart graft rejection, and can also inhibit the capacity of naive T cells to restore rejection, while in the first few weeks post- transplant, both CD4+ and CD8+ T cells from CSA-treated hosts have the capacity to effect PVG graft rejection. In this study, we demonstrated the CD4+ suppressor cells also had the capacity to inhibit restoration of rejection by CD4+ cells from CSA-treated DA rats recently transplanted with PVG hearts, and from rats sensitized to third party, but not from those specifically sensitized to PVG. They also inhibited the capacity of both naive CD8+ and sensitized CD8+ cells to effect rejection. These results showed that the CD4+ suppressor cell was capable of overriding the capacity to effect rejection of the CD4+ cell and activated CD8+ cells that were present in the CSA-treated host shortly after transplantation. The failure of naive CD8+ cells to augment suppression and the capacity of CD4+ suppressor cells to transfer unresponsiveness to irradiated hosts in which regeneration of CD8+ cells was abolished by thymectomy suggested that it was the CD4+ cell alone that mediated suppression. However, the failure of CD4+ suppressor cells to reinduce unresponsiveness in irradiated hosts whose CD8+ cells had been depleted by therapy with the mAb MRC Ox8 showed that a radioresistant CD8+ cell was required to reestablish the state of specific unresponsiveness. The induction of CD4+ suppressor cells in thymectomized hosts suggested that these cells were derived from long- lived CD4+ lymphocytes. However, their sensitivity to cyclophosphamide and their loss of suppressor function both after removal of the graft and after 3 d in culture demonstrated that the suppressor cell itself had a short lifespan. The CD4+ suppressor was shown to be MRC Ox22+ (CD45R+), MRC Ox17+ (MHC class II), and MRC Ox39+ (CD25, IL-2-R). These studies demonstrated the CD4+ suppressive cell identified in rats with specific unresponsiveness induced by CSA therapy had many features of the suppressor inducer cell identified in in vitro studies of the alloimmune response.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur R. P., Mason D. T cells that help B cell responses to soluble antigen are distinguishable from those producing interleukin 2 on mitogenic or allogeneic stimulation. J Exp Med. 1986 Apr 1;163(4):774–786. doi: 10.1084/jem.163.4.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bach F. H., Bach M. L., Sondel P. M. Differential function of major histocompatibility complex antigens in T-lymphocyte activation. Nature. 1976 Jan 29;259(5541):273–281. doi: 10.1038/259273a0. [DOI] [PubMed] [Google Scholar]
  3. Bottomly K. A functional dichotomy in CD4+ T lymphocytes. Immunol Today. 1988 Sep;9(9):268–274. doi: 10.1016/0167-5699(88)91308-4. [DOI] [PubMed] [Google Scholar]
  4. Brideau R. J., Carter P. B., McMaster W. R., Mason D. W., Williams A. F. Two subsets of rat T lymphocytes defined with monoclonal antibodies. Eur J Immunol. 1980 Aug;10(8):609–615. doi: 10.1002/eji.1830100807. [DOI] [PubMed] [Google Scholar]
  5. Bursuker I., North R. J. Generation and decay of the immune response to a progressive fibrosarcoma. II. Failure to demonstrate postexcision immunity after the onset of T cell-mediated suppression of immunity. J Exp Med. 1984 May 1;159(5):1312–1321. doi: 10.1084/jem.159.5.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cerottini J. C., Brunner K. T. Cell-mediated cytotoxicity, allograft rejection, and tumor immunity. Adv Immunol. 1974;18:67–132. doi: 10.1016/s0065-2776(08)60308-9. [DOI] [PubMed] [Google Scholar]
  7. Dallman M. J., Thomas M. L., Green J. R. MRC OX-19: a monoclonal antibody that labels rat T lymphocytes and augments in vitro proliferative responses. Eur J Immunol. 1984 Mar;14(3):260–267. doi: 10.1002/eji.1830140311. [DOI] [PubMed] [Google Scholar]
  8. Damle N. K., Engleman E. G. Immunoregulatory T cell circuits in man. Alloantigen-primed inducer T cells activate alloantigen-specific suppressor T cells in the absence of the initial antigenic stimulus. J Exp Med. 1983 Jul 1;158(1):159–173. doi: 10.1084/jem.158.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Damle N. K., Mohagheghpour N., Kansas G. S., Fishwild D. M., Engleman E. G. Immunoregulatory T cell circuits in man. Identification of a distinct T cell subpopulation of the helper/inducer lineage that amplifies the development of alloantigen-specific suppressor T cells. J Immunol. 1985 Jan;134(1):235–243. [PubMed] [Google Scholar]
  10. Dorf M. E., Benacerraf B. Suppressor cells and immunoregulation. Annu Rev Immunol. 1984;2:127–157. doi: 10.1146/annurev.iy.02.040184.001015. [DOI] [PubMed] [Google Scholar]
  11. Farnsworth A., Wotherspoon J. S., Dorsch S. E. Postirradiation recovery of lymphoid cells in the rat. Transplantation. 1988 Sep;46(3):418–425. doi: 10.1097/00007890-198809000-00018. [DOI] [PubMed] [Google Scholar]
  12. Freitas Rodrigues M. A., Hutchinson I. V., Morris P. J. Three phenotypically distinct populations of T suppressor cells resistant to cyclosporine A in the rat. Transplant Proc. 1987 Oct;19(5):4281–4282. [PubMed] [Google Scholar]
  13. Green D. R., Flood P. M., Gershon R. K. Immunoregulatory T-cell pathways. Annu Rev Immunol. 1983;1:439–463. doi: 10.1146/annurev.iy.01.040183.002255. [DOI] [PubMed] [Google Scholar]
  14. Gurley K. E., Hall B. M., Dorsch S. E. "The factor of immunization" in allograft rejection: carried by cytotoxic T cells, not helper-inducer T cells. Transplant Proc. 1986 Apr;18(2):307–309. [PubMed] [Google Scholar]
  15. Hall B. M., Dorsch S., Roser B. The cellular basis of allograft rejection in vivo. I. The cellular requirements for first-set rejection of heart grafts. J Exp Med. 1978 Oct 1;148(4):878–889. doi: 10.1084/jem.148.4.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hall B. M., Gurley K. E., Dorsch S. E. The possible role of cytotoxic T cells in the mediation of first-set allograft rejection. Transplantation. 1985 Sep;40(3):336–339. [PubMed] [Google Scholar]
  17. Hall B. M., Jelbart M. E., Gurley K. E., Dorsch S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. Mediation of specific suppression by T helper/inducer cells. J Exp Med. 1985 Nov 1;162(5):1683–1694. doi: 10.1084/jem.162.5.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hall B. M. Mechanisms maintaining enhancement of allografts. I. Demonstration of a specific suppressor cell. J Exp Med. 1985 Jan 1;161(1):123–133. doi: 10.1084/jem.161.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hall B. M., de Saxe I., Dorsch S. E. The cellular basis of allograft rejection in vivo. III. Restoration of first-set rejection of heart grafts by T helper cells in irradiated rats. Transplantation. 1983 Dec;36(6):700–705. doi: 10.1097/00007890-198336060-00023. [DOI] [PubMed] [Google Scholar]
  20. Heidecke C. D., Kupiec-Weglinski J. W., Lear P. A., Abbud-Filho M., Araujo J. L., Araneda D., Strom T. B., Tilney N. L. Interactions between T lymphocyte subsets supported by interleukin 2-rich lymphokines produce acute rejection of vascularized cardiac allografts in T cell deprived rats. J Immunol. 1984 Aug;133(2):582–588. [PubMed] [Google Scholar]
  21. Homan W. P., Fabre J. W., Millard P. R., Morris P. J. Effect of cyclosporin A upon second-set rejection of rat renal allografts. Transplantation. 1980 Nov;30(5):354–357. doi: 10.1097/00007890-198011000-00009. [DOI] [PubMed] [Google Scholar]
  22. Hutchinson I. V. Suppressor T cells in allogeneic models. Transplantation. 1986 May;41(5):547–555. doi: 10.1097/00007890-198605000-00001. [DOI] [PubMed] [Google Scholar]
  23. Kupiec-Weglinski J. W., Heidecke C. D., Araujo J. L., Abbud-Filho M., Towpik E., Araneda D., Strom T. B., Tilney N. L. Behavior of helper T lymphocytes in cyclosporine-mediated long-term graft acceptance in the rat. Cell Immunol. 1985 Jun;93(1):168–177. doi: 10.1016/0008-8749(85)90397-1. [DOI] [PubMed] [Google Scholar]
  24. LeFrancois L., Bevan M. J. A reexamination of the role of LYT-2-positive T cells in murine skin graft rejection. J Exp Med. 1984 Jan 1;159(1):57–67. doi: 10.1084/jem.159.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lowry R. P., Forbes R. D., Blackburn J. H., Marghesco D. M. Immune mechanisms in organ allograft rejection. V. Pivotal role of the cytotoxic-suppressor T cell subset in the rejection of heart grafts bearing isolated class I disparities in the inbred rat. Transplantation. 1985 Nov;40(5):545–550. [PubMed] [Google Scholar]
  26. Lowry R. P., Gurley K. E. Immune mechanisms in organ allograft rejection. III. Cellular and humoral immunity in rejection of organ allografts transplanted across MHC subregion disparity RT1.B (RT1.D). Transplantation. 1983 Oct;36(4):405–411. [PubMed] [Google Scholar]
  27. McMaster W. R., Williams A. F. Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol. 1979 Jun;9(6):426–433. doi: 10.1002/eji.1830090603. [DOI] [PubMed] [Google Scholar]
  28. Mjörnstedt L., Olausson M., Lindholm L., Söderström T., Brynger H. Mechanisms maintaining transplantation tolerance in antithymocyte globulin-treated rats. Transplantation. 1987 Nov;44(5):669–673. doi: 10.1097/00007890-198711000-00015. [DOI] [PubMed] [Google Scholar]
  29. Mohagheghpour N., Damle N. K., Takada S., Engleman E. G. Generation of antigen receptor-specific suppressor T cell clones in man. J Exp Med. 1986 Sep 1;164(3):950–955. doi: 10.1084/jem.164.3.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Morimoto C., Letvin N. L., Rudd C. E., Hagan M., Takeuchi T., Schlossman S. F. The role of the 2H4 molecule in the generation of suppressor function in Con A-activated T cells. J Immunol. 1986 Nov 15;137(10):3247–3253. [PubMed] [Google Scholar]
  31. North R. J., Bursuker I. Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells. J Exp Med. 1984 May 1;159(5):1295–1311. doi: 10.1084/jem.159.5.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ono K., Lindsey E. S. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg. 1969 Feb;57(2):225–229. [PubMed] [Google Scholar]
  33. Padberg W. M., Kupiec-Weglinski J. W., Lord R. H., Araneda D. H., Tilney N. L. W3/25+ T cells mediate the induction of immunologic unresponsiveness in enhanced rat recipients of cardiac allografts. J Immunol. 1987 Jun 1;138(11):3669–3674. [PubMed] [Google Scholar]
  34. Padberg W. M., Lord R. H., Kupiec-Weglinski J. W., Williams J. M., Di Stefano R., Thornburg L. E., Araneda D., Strom T. B., Tilney N. L. Two phenotypically distinct populations of T cells have suppressor capabilities simultaneously in the maintenance phase of immunologic enhancement. J Immunol. 1987 Sep 15;139(6):1751–1757. [PubMed] [Google Scholar]
  35. Parnes J. R. Molecular biology and function of CD4 and CD8. Adv Immunol. 1989;44:265–311. doi: 10.1016/s0065-2776(08)60644-6. [DOI] [PubMed] [Google Scholar]
  36. Paterson D. J., Jefferies W. A., Green J. R., Brandon M. R., Corthesy P., Puklavec M., Williams A. F. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol. 1987 Dec;24(12):1281–1290. doi: 10.1016/0161-5890(87)90122-2. [DOI] [PubMed] [Google Scholar]
  37. Pearce N. W., Spinelli A., Gurley K. E., Dorsch S. E., Hall B. M. Mechanisms maintaining antibody-induced enhancement of allografts. II. Mediation of specific suppression by short lived CD4+ T cells. J Immunol. 1989 Jul 15;143(2):499–506. [PubMed] [Google Scholar]
  38. Powrie F., Mason D. The MRC OX-22- CD4+ T cells that help B cells in secondary immune responses derive from naive precursors with the MRC OX-22+ CD4+ phenotype. J Exp Med. 1989 Mar 1;169(3):653–662. doi: 10.1084/jem.169.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rosenberg A. S., Mizuochi T., Sharrow S. O., Singer A. Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection. J Exp Med. 1987 May 1;165(5):1296–1315. doi: 10.1084/jem.165.5.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Roser B. J. Cellular mechanisms in neonatal and adult tolerance. Immunol Rev. 1989 Feb;107:179–202. doi: 10.1111/j.1600-065x.1989.tb00009.x. [DOI] [PubMed] [Google Scholar]
  41. Sedgwick J. D. Long-term depletion of CD8+ T cells in vivo in the rat: no observed role for CD8+ (cytotoxic/suppressor) cells in the immunoregulation of experimental allergic encephalomyelitis. Eur J Immunol. 1988 Apr;18(4):495–502. doi: 10.1002/eji.1830180402. [DOI] [PubMed] [Google Scholar]
  42. Spickett G. P., Brandon M. R., Mason D. W., Williams A. F., Woollett G. R. MRC OX-22, a monoclonal antibody that labels a new subset of T lymphocytes and reacts with the high molecular weight form of the leukocyte-common antigen. J Exp Med. 1983 Sep 1;158(3):795–810. doi: 10.1084/jem.158.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sprent J., Schaefer M., Lo D., Korngold R. Properties of purified T cell subsets. II. In vivo responses to class I vs. class II H-2 differences. J Exp Med. 1986 Apr 1;163(4):998–1011. doi: 10.1084/jem.163.4.998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Strober S. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol. 1984;2:219–237. doi: 10.1146/annurev.iy.02.040184.001251. [DOI] [PubMed] [Google Scholar]
  45. Tilney N. L., Kupiec-Weglinski J. W., Heidecke C. D., Lear P. A., Strom T. B. Mechanisms of rejection and prolongation of vascularized organ allografts. Immunol Rev. 1984;77:185–216. doi: 10.1111/j.1600-065x.1984.tb00722.x. [DOI] [PubMed] [Google Scholar]
  46. Wheelahan J., McKenzie I. F. The role of T4+ and Ly-2+ cells in skin graft rejection in the mouse. Transplantation. 1987 Aug;44(2):273–280. doi: 10.1097/00007890-198708000-00019. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES