Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Jul 1;162(1):297–310. doi: 10.1084/jem.162.1.297

Cloned natural suppressor cell lines derived from the spleens of neonatal mice

PMCID: PMC2187699  PMID: 3159827

Abstract

The establishment and characterization of cloned natural suppressor (NS) cell lines derived from the spleen of neonatal BALB/c mice are described. Cloned NS cells suppress the mixed leukocyte reaction (MLR) between normal adult responder and stimulator spleen cells with a 50- fold greater efficiency than fresh neonatal cells. Suppressive activity of both cells did not depend on the haplotype of the responder or stimulator cells, and was radioresistant. Cloned NS cells did not inhibit the uptake of [3H]thymidine by HT-2 cells proliferating in response to interleukin 2 (IL-2), nor the in vitro secretion of IL-1 by macrophages in response to lipopolysaccharide. Several experiments indicated that absorption of IL-2 could not explain the suppression of the MLR by the NS cells in the range of cell numbers tested. The results suggest that NS cells may suppress the MLR by interfering with early stages of T cell activation. The cell surface of a cloned NS cell line was examined using immunofluorescence staining, and was strongly positive for the Thy-1.2, Ly-5, and asialo-GM1 antigens. However, Lyt- 1, Lyt-2, surface Ig, IE, MAC-1, and Fc and C3 receptor markers were not detected. In addition, NS cells showed no cytolytic activity against the YAC-1 target cell line. On the basis of these findings, cloned NS cells do not appear to be mature T cells, B cells, macrophages, or NK cells. The development of cloned NS cells may be useful in determining the identity and mechanism of action of nonspecific suppressor cells in the neonatal spleen, and their role in neonatal tolerance and maternal-fetal relationships.

Full Text

The Full Text of this article is available as a PDF (902.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argyris B. F. Nature of neonatal splenic suppressor cells in the mouse. Cell Immunol. 1982 Jan 15;66(2):352–359. doi: 10.1016/0008-8749(82)90185-x. [DOI] [PubMed] [Google Scholar]
  2. Argyris B. F. Suppressor activity in the spleen of neonatal mice. Cell Immunol. 1978 Mar 15;36(2):354–362. doi: 10.1016/0008-8749(78)90279-4. [DOI] [PubMed] [Google Scholar]
  3. Bassett M., Coons T. A., Wallis W., Goldberg E. H., Williams R. C., Jr Suppression of stimulation in mixed leukocyte culture by newborn splenic lymphocytes in the mouse. J Immunol. 1977 Nov;119(5):1855–1857. [PubMed] [Google Scholar]
  4. Brooks C. G., Kuribayashi K., Sale G. E., Henney C. S. Characterization of five cloned murine cell lines showing high cytolytic activity against YAC-1 cells. J Immunol. 1982 May;128(5):2326–2335. [PubMed] [Google Scholar]
  5. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  6. Dennert G., Yogeeswaran G., Yamagata S. Cloned cell lines with natural killer activity. Specificity, function, and cell surface markers. J Exp Med. 1981 Mar 1;153(3):545–556. doi: 10.1084/jem.153.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dvorak A. M., Galli S. J., Marcum J. A., Nabel G., der Simonian H., Goldin J., Monahan R. A., Pyne K., Cantor H., Rosenberg R. D. Cloned mouse cells with natural killer function and cloned suppressor T cells express ultrastructural and biochemical features not shared by cloned inducer T cells. J Exp Med. 1983 Mar 1;157(3):843–861. doi: 10.1084/jem.157.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goding J. W. Conjugation of antibodies with fluorochromes: modifications to the standard methods. J Immunol Methods. 1976;13(3-4):215–226. doi: 10.1016/0022-1759(76)90068-5. [DOI] [PubMed] [Google Scholar]
  9. Hertel-Wulff B., Okada S., Oseroff A., Strober S. In vitro propagation and cloning of murine natural suppressor (NS) cells. J Immunol. 1984 Nov;133(5):2791–2796. [PubMed] [Google Scholar]
  10. Jacoby D. R., Olding L. B., Oldstone M. B. Immunologic regulation of fetal-maternal balance. Adv Immunol. 1984;35:157–208. doi: 10.1016/s0065-2776(08)60576-3. [DOI] [PubMed] [Google Scholar]
  11. Jadus M. R., Peck A. B. Naturally occurring spleen-associated suppressor activity of the newborn mouse. Requirement for two genetic restrictions in suppression of lethal graft-versus-host disease by newborn spleen cells. Scand J Immunol. 1984 Jul;20(1):81–91. doi: 10.1111/j.1365-3083.1984.tb00980.x. [DOI] [PubMed] [Google Scholar]
  12. King D. P., Srober S., Kaplan H. S. Suppression of the mixed leukocyte response and of graft-vs-host disease by spleen cells following total lymphoid irradiation (TLI). J Immunol. 1981 Mar;126(3):1140–1145. [PubMed] [Google Scholar]
  13. Knapp M. R., Jones P. P., Black S. J., Vitetta E. S., Slavin S., Strober S. Characterization of a spontaneous murine B cell leukemia (BCL1). I. Cell surface expression of IgM, IgD, Ia, and FcR. J Immunol. 1979 Sep;123(3):992–999. [PubMed] [Google Scholar]
  14. Koren H. S., Handwerger B. S., Wunderlich J. R. Identification of macrophage-like characteristics in a cultured murine tumor line. J Immunol. 1975 Feb;114(2 Pt 2):894–897. [PubMed] [Google Scholar]
  15. Lafrenz D., Koretz S., Stratte P. T., Ward R. B., Strober S. LPS-induced differentiation of a murine B cell leukemia (BCL1): changes in surface and secreted IgM. J Immunol. 1982 Sep;129(3):1329–1335. [PubMed] [Google Scholar]
  16. Mosier D. E., Johnson B. M. Ontogeny of mouse lymphocyte function. II. Development of the ability to produce antibody is modulated by T lymphocytes. J Exp Med. 1975 Jan 1;141(1):216–226. doi: 10.1084/jem.141.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murgita R. A., Wigzell H. Regulation of immune functions in the fetus and newborn. Prog Allergy. 1981;29:54–133. [PubMed] [Google Scholar]
  18. Nabel G., Bucalo L. R., Allard J., Wigzell H., Cantor H. Multiple activities of a cloned cell line mediating natural killer cell function. J Exp Med. 1981 Jun 1;153(6):1582–1591. doi: 10.1084/jem.153.6.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okada S., Strober S. Spleen cells from adult mice given total lymphoid irradiation (TLI) or from newborn mice have similar regulatory effects in the mixed leukocyte reaction (MLR). II. Generation of antigen-specific suppressor cells in the MLR after the addition of spleen cells from newborn mice. J Immunol. 1982 Nov;129(5):1892–1897. [PubMed] [Google Scholar]
  20. Oseroff A., Okada S., Strober S. Natural suppressor (NS) cells found in the spleen of neonatal mice and adult mice given total lymphoid irradiation (TLI) express the null surface phenotype. J Immunol. 1984 Jan;132(1):101–110. [PubMed] [Google Scholar]
  21. Peeler K., Wigzell H., Peck A. B. Isolation and identification of the naturally occurring, newborn spleen-associated suppressor cells. A mixed monocyte/mast cell population with separable suppressor activities. Scand J Immunol. 1983 May;17(5):443–453. doi: 10.1111/j.1365-3083.1983.tb00811.x. [DOI] [PubMed] [Google Scholar]
  22. Piguet P. F., Irle C., Vassalli P. Immunosuppressor cells from newborn mouse spleen are macrophages differentiating in vitro from monoblastic precursors. Eur J Immunol. 1981 Jan;11(1):56–61. doi: 10.1002/eji.1830110112. [DOI] [PubMed] [Google Scholar]
  23. Rodriguez G., Andersson G., Wigzell H., Peck A. B. Non-T cell nature of the naturally occurring, spleen-associated suppressor cells present in the newborn mouse. Eur J Immunol. 1979 Sep;9(9):737–746. doi: 10.1002/eji.1830090913. [DOI] [PubMed] [Google Scholar]
  24. SIMONSEN M. Graft versus host reactions. Their natural history, and applicability as tools of research. Prog Allergy. 1962;6:349–467. [PubMed] [Google Scholar]
  25. Skowron-Cendrzak A., Ptak W. Suprression of local graft-versus-host reactions by mouse fetal and newborn spleen cells. Eur J Immunol. 1976 Jun;6(6):451–452. doi: 10.1002/eji.1830060613. [DOI] [PubMed] [Google Scholar]
  26. Strober S. Natural suppressor (NS) cells, neonatal tolerance, and total lymphoid irradiation: exploring obscure relationships. Annu Rev Immunol. 1984;2:219–237. doi: 10.1146/annurev.iy.02.040184.001251. [DOI] [PubMed] [Google Scholar]
  27. TODARO G. J., GREEN H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963 May;17:299–313. doi: 10.1083/jcb.17.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tutschka P. J., Hess A. D., Beschorner W. E., Santos G. W. Suppressor cells in transplantation tolerance. I. Suppressor cells in the mechanism of tolerance in radiation chimeras. Transplantation. 1981 Sep;32(3):203–209. doi: 10.1097/00007890-198109000-00005. [DOI] [PubMed] [Google Scholar]
  29. Waer M., Ang K. K., van der Schueren E., Vandeputte M. Increased incidence of murine graft-versus-host disease after allogeneic bone marrow transplantation by previous infusion of syngeneic bone marrow cells. Transplantation. 1984 Oct;38(4):396–400. doi: 10.1097/00007890-198410000-00016. [DOI] [PubMed] [Google Scholar]
  30. Watson J. Continuous proliferation of murine antigen-specific helper T lymphocytes in culture. J Exp Med. 1979 Dec 1;150(6):1510–1519. doi: 10.1084/jem.150.6.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES