Abstract
A new cell surface protein, podoendin, has been identified in Sprague- Dawley rats, and isolated using monoclonal antibody (mAb) G4. The distribution of podoendin is restricted to the surface of glomerular podocytes, urinary surface of the parietal epithelium of Bowman's capsule, and the luminal surface of endothelial cells. The antibody does not crossreact with podocytes or endothelia of human or mice. In newborn rats, the appearance of podoendin on glomerular epithelium is attendant on podocyte differentiation during glomerulogenesis of metanephrogenic vesicles. It disappears when podocytes retract and efface foot processes in tissue culture. Thus, podoendin appears to be a cell differentiation-dependent surface protein of podocytes. Podoendin is a protein of 62 kD mobility on 5% polyacrylamide gel electrophoresis. It stains intensely with Coomassie blue, but gives negative reactions to carbohydrate (periodic acid/Schiff reaction) and polyanions (alcian blue, colloidal iron, and carbocyanine). It is distinct from the major sialoglycoprotein of podocyte fuzzy coat, podocalyxin (11). Podoendin isolated and purified from endothelium of lungs appears to be identical with that from podocytes and endothelium of kidneys. Injection of mAb G4 into left ventricle of rats resulted in intense decoration of the endothelium and podocyte surface within 30 min. The decoration persisted throughout the 3-d period of observation. This was not accompanied by complement (C3) fixation. Preliminary results showed that the rats developed moderate proteinuria (100 mg/ml protein in urine), which was associated with the presence of hyaline droplets in renal tubules, on the third day. The proteinuria was not accompanied by effacement of podocyte pedicels. There were no morphologic alterations indicating glomerular or vascular injury in the kidneys.
Full Text
The Full Text of this article is available as a PDF (4.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews P. M., Coffey A. K. Cytoplasmic contractile elements in glomerular cells. Fed Proc. 1983 Nov;42(14):3046–3052. [PubMed] [Google Scholar]
- Blau E. B., Haas J. E. Glomerular sialic acid and proteinuria in human renal disease. Lab Invest. 1973 Apr;28(4):477–481. [PubMed] [Google Scholar]
- COCHRANE C. G., UNANUE E. R., DIXON F. J. A ROLE OF POLYMORPHONUCLEAR LEUKOCYTES AND COMPLEMENT IN NEPHROTOXIC NEPHRITIS. J Exp Med. 1965 Jul 1;122:99–116. doi: 10.1084/jem.122.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capone P. M., Papsidero L. D., Croghan G. A., Chu T. M. Experimental tumoricidal effects of monoclonal antibody against solid breast tumors. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7328–7332. doi: 10.1073/pnas.80.23.7328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caulfield J. P. Alterations in the distribution of Alcian blue-staining fibrillar anionic sites in the glomerular basement membrane in aminonucleoside nephrosis. Lab Invest. 1979 Apr;40(4):503–511. [PubMed] [Google Scholar]
- Cohen M. P., Surma M. Renal glomerular basement membrane. In vivo biosynthesis and turnover in normal rats. J Biol Chem. 1980 Mar 10;255(5):1767–1770. [PubMed] [Google Scholar]
- Courtoy P. J., Picton D. H., Farquhar M. G. Resolution and limitations of the immunoperoxidase procedure in the localization of extracellular matrix antigens. J Histochem Cytochem. 1983 Jul;31(7):945–951. doi: 10.1177/31.7.6304184. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Gown A. M., Vogel A. M. Monoclonal antibodies to human intermediate filament proteins. II. Distribution of filament proteins in normal human tissues. Am J Pathol. 1984 Feb;114(2):309–321. [PMC free article] [PubMed] [Google Scholar]
- Hsu S. M., Raine L., Fanger H. A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol. 1981 May;75(5):734–738. doi: 10.1093/ajcp/75.5.734. [DOI] [PubMed] [Google Scholar]
- Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
- Huang T. W. Basal lamina heterogeneity in the glomerular capillary tufts of human kidneys. J Exp Med. 1979 Jun 1;149(6):1450–1459. doi: 10.1084/jem.149.6.1450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang T. W., Lagunoff D., Benditt E. P. Nonaggregative adherence of platelets to basal lamina in vitro. Lab Invest. 1974 Aug;31(2):156–160. [PubMed] [Google Scholar]
- Huang T. W. The nature of basal lamina alterations in human diabetic glomerulosclerosis. Am J Pathol. 1980 Jul;100(1):225–238. [PMC free article] [PubMed] [Google Scholar]
- Jones D. B. Mucosubstances of the glomerulus. Lab Invest. 1969 Aug;21(2):119–125. [PubMed] [Google Scholar]
- Kaplan K. L., Weber D., Cook P., Dalecki M., Rogozinski L., Sepe O., Knowles D., Butler V. P. Monoclonal antibodies to E92, an endothelial cell surface antigen. Arteriosclerosis. 1983 Sep-Oct;3(5):403–412. doi: 10.1161/01.atv.3.5.403. [DOI] [PubMed] [Google Scholar]
- Kerjaschki D., Farquhar M. G. Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J Exp Med. 1983 Feb 1;157(2):667–686. doi: 10.1084/jem.157.2.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerjaschki D., Sharkey D. J., Farquhar M. G. Identification and characterization of podocalyxin--the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol. 1984 Apr;98(4):1591–1596. doi: 10.1083/jcb.98.4.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King L. E., Jr, Morrison M. The visualization of human erythrocyte membrane proteins and glycoproteins in SDS polyacrylamide gels employing a single staining procedure. Anal Biochem. 1976 Mar;71(1):223–230. doi: 10.1016/0003-2697(76)90031-2. [DOI] [PubMed] [Google Scholar]
- Latta H., Johnston W. H., Stanley T. M. Sialoglycoproteins and filtration barriers in the glomerular capillary wall. J Ultrastruct Res. 1975 Jun;51(3):354–376. doi: 10.1016/s0022-5320(75)80100-6. [DOI] [PubMed] [Google Scholar]
- Levy R., Miller R. A. Tumor therapy with monoclonal antibodies. Fed Proc. 1983 Jun;42(9):2650–2656. [PubMed] [Google Scholar]
- Mendrick D. L., Rennke H. G., Cotran R. S., Springer T. A., Abbas A. K. Monoclonal antibodies against rat glomerular antigens: production and specificity. Lab Invest. 1983 Jul;49(1):107–117. [PubMed] [Google Scholar]
- Michael A. F., Blau E., Vernier R. L. Glomerular polyanion. Alteration in aminonucleoside nephrosis. Lab Invest. 1970 Dec;23(6):649–657. [PubMed] [Google Scholar]
- Mohos S. C., Skoza L. Glomerular sialoprotein. Science. 1969 Jun 27;164(3887):1519–1521. doi: 10.1126/science.164.3887.1519. [DOI] [PubMed] [Google Scholar]
- Mohos S. C., Skoza L. Histochemical demonstration and localization of sialoproteins in the glomerulus. Exp Mol Pathol. 1970 Jun;12(3):316–323. doi: 10.1016/0014-4800(70)90063-8. [DOI] [PubMed] [Google Scholar]
- Nörgaard J. O. Retraction of epithelial foot processes during culture of isolated glomeruli. Lab Invest. 1978 Mar;38(3):320–329. [PubMed] [Google Scholar]
- RINEHART J. F., ABUL-HAJ S. K. An improved method for histologic demonstration of acid mucopolysaccharides in tissues. AMA Arch Pathol. 1951 Aug;52(2):189–194. [PubMed] [Google Scholar]
- Reeves W., Caulfield J. P., Farquhar M. G. Differentiation of epithelial foot processes and filtration slits: sequential appearance of occluding junctions, epithelial polyanion, and slit membranes in developing glomeruli. Lab Invest. 1978 Aug;39(2):90–100. [PubMed] [Google Scholar]
- Seiler M. W., Venkatachalam M. A., Cotran R. S. Glomerular epithelium: structural alterations induced by polycations. Science. 1975 Aug 1;189(4200):390–393. doi: 10.1126/science.1145209. [DOI] [PubMed] [Google Scholar]
- Staehelin T., Hobbs D. S., Kung H., Lai C. Y., Pestka S. Purification and characterization of recombinant human leukocyte interferon (IFLrA) with monoclonal antibodies. J Biol Chem. 1981 Sep 25;256(18):9750–9754. [PubMed] [Google Scholar]
- Wang S. M., Huang T. W., Hakomori S. Immunohistochemistry of two glycolipid tissue antigens in human gastric carcinoma. Cancer. 1983 Dec 1;52(11):2072–2076. doi: 10.1002/1097-0142(19831201)52:11<2072::aid-cncr2820521117>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
- Wardi A. H., Michos G. A. Alcian blue staining of glycoproteins in acrylamide disc electrophoresis. Anal Biochem. 1972 Oct;49(2):607–609. doi: 10.1016/0003-2697(72)90472-1. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Yeh M. Y., Hellström I., Brown J. P., Warner G. A., Hansen J. A., Hellström K. E. Cell surface antigens of human melanoma identified by monoclonal antibody. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2927–2931. doi: 10.1073/pnas.76.6.2927. [DOI] [PMC free article] [PubMed] [Google Scholar]