Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Feb 1;171(2):377–387. doi: 10.1084/jem.171.2.377

Class I-restricted processing and presentation of exogenous cell- associated antigen in vivo

PMCID: PMC2187713  PMID: 2137512

Abstract

MHC class I-restricted T lymphocyte responses are usually directed to cellular antigenic components resulting from endogenous gene expression. Exogenous, non-replicating antigens, such as soluble proteins, usually fail to enter the class I pathway of antigen processing and presentation. Consistent with this notion, we have recently shown that soluble, exogenous proteins can be efficiently processed for class I presentation in vitro only if they are introduced directly into the target cell cytoplasm. In this report we extend this work to the in vivo situation by introducing soluble protein into the cytoplasm of mouse splenocytes via the osmotic lysis of pinosomes and then using these cells for in vivo immunization. Our results show that cytoplasmic loading of OVA and beta-GAL into H-2b and H-2d splenocytes respectively, resulted in effective in vivo immunogens for class I- restricted CTL. To our surprise, control spleen cell preparations simply incubated with the exogenous, native protein for 10 min at 37 degrees C in isotonic medium and then washed could also induce a comparable class I-restricted CTL response following intravenous injection. Experiments using (H-2b X H-2d)F1 mice showed that protein pulsed splenocytes from one parental strain could effectively "cross prime" T cells restricted to the MHC of the other parental strain. In all cases, target cell recognition by the effector CTL generated by immunization with spleen cell-associated antigen required the antigen to be present in the cell cytoplasm. Thus the CTL do not recognize target cells exposed to soluble, exogenous antigen. These results, reminiscent of analogous experiments with cross priming by minor histocompatibility antigens, argue that class I-restricted processing and presentation of exogenous antigen can occur in vivo following immunization with cell-associated antigen.

Full Text

The Full Text of this article is available as a PDF (636.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M. J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med. 1976 May 1;143(5):1283–1288. doi: 10.1084/jem.143.5.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carbone F. R., Bevan M. J. Induction of ovalbumin-specific cytotoxic T cells by in vivo peptide immunization. J Exp Med. 1989 Mar 1;169(3):603–612. doi: 10.1084/jem.169.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fossum S., Rolstad B. The roles of interdigitating cells and natural killer cells in the rapid rejection of allogeneic lymphocytes. Eur J Immunol. 1986 Apr;16(4):440–450. doi: 10.1002/eji.1830160422. [DOI] [PubMed] [Google Scholar]
  4. Germain R. N. Antigen processing and CD4+ T cell depletion in AIDS. Cell. 1988 Aug 12;54(4):441–444. doi: 10.1016/0092-8674(88)90062-1. [DOI] [PubMed] [Google Scholar]
  5. Germain R. N. Immunology. The ins and outs of antigen processing and presentation. Nature. 1986 Aug 21;322(6081):687–689. doi: 10.1038/322687a0. [DOI] [PubMed] [Google Scholar]
  6. Gooding L. R., Edwards C. B. H-2 antigen requirements in the in vitro induction of SV40-specific cytotoxic T lymphocytes. J Immunol. 1980 Mar;124(3):1258–1262. [PubMed] [Google Scholar]
  7. Lögdberg L., Wassmer P., Shevach E. M. Role of the L3T4 antigen in T-cell activation. I. Description of a monoclonal IgM antibody to a distinct epitope (L3T4b) of the L3T4 antigen and its effect on interleukin 1-induced thymocyte proliferation. Cell Immunol. 1985 Sep;94(2):299–311. doi: 10.1016/0008-8749(85)90254-0. [DOI] [PubMed] [Google Scholar]
  8. Moore M. W., Carbone F. R., Bevan M. J. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell. 1988 Sep 9;54(6):777–785. doi: 10.1016/s0092-8674(88)91043-4. [DOI] [PubMed] [Google Scholar]
  9. Morrison L. A., Lukacher A. E., Braciale V. L., Fan D. P., Braciale T. J. Differences in antigen presentation to MHC class I-and class II-restricted influenza virus-specific cytolytic T lymphocyte clones. J Exp Med. 1986 Apr 1;163(4):903–921. doi: 10.1084/jem.163.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rammensee H. G., Schild H., Theopold U. Protein-specific cytotoxic T lymphocytes. Recognition of transfectants expressing intracellular, membrane-associated or secreted forms of beta-galactosidase. Immunogenetics. 1989;30(4):296–302. doi: 10.1007/BF02421334. [DOI] [PubMed] [Google Scholar]
  11. Sarmiento M., Glasebrook A. L., Fitch F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol. 1980 Dec;125(6):2665–2672. [PubMed] [Google Scholar]
  12. Shimonkevitz R., Kappler J., Marrack P., Grey H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J Exp Med. 1983 Aug 1;158(2):303–316. doi: 10.1084/jem.158.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  14. Staerz U. D., Karasuyama H., Garner A. M. Cytotoxic T lymphocytes against a soluble protein. Nature. 1987 Oct 1;329(6138):449–451. doi: 10.1038/329449a0. [DOI] [PubMed] [Google Scholar]
  15. Steinman R. M., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med. 1974 Feb 1;139(2):380–397. doi: 10.1084/jem.139.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tevethia S. S., Flyer D. C., Tjian R. Biology of simian virus 40 (SV40) transplantation antigen (TrAg). VI. Mechanism of induction of SV40 transplantation immunity in mice by purified SV40 T antigen (D2 protein). Virology. 1980 Nov;107(1):13–23. doi: 10.1016/0042-6822(80)90268-8. [DOI] [PubMed] [Google Scholar]
  17. Townsend A. R., Gotch F. M., Davey J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell. 1985 Sep;42(2):457–467. doi: 10.1016/0092-8674(85)90103-5. [DOI] [PubMed] [Google Scholar]
  18. Townsend A. R., Rothbard J., Gotch F. M., Bahadur G., Wraith D., McMichael A. J. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986 Mar 28;44(6):959–968. doi: 10.1016/0092-8674(86)90019-x. [DOI] [PubMed] [Google Scholar]
  19. Watari E., Dietzschold B., Szokan G., Heber-Katz E. A synthetic peptide induces long-term protection from lethal infection with herpes simplex virus 2. J Exp Med. 1987 Feb 1;165(2):459–470. doi: 10.1084/jem.165.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wraith D. C., Askonas B. A. Induction of influenza A virus cross-reactive cytotoxic T cells by a nucleoprotein/haemagglutinin preparation. J Gen Virol. 1985 Jun;66(Pt 6):1327–1331. doi: 10.1099/0022-1317-66-6-1327. [DOI] [PubMed] [Google Scholar]
  21. Yewdell J. W., Bennink J. R., Hosaka Y. Cells process exogenous proteins for recognition by cytotoxic T lymphocytes. Science. 1988 Feb 5;239(4840):637–640. doi: 10.1126/science.3257585. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES