Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Feb 1;171(2):427–437. doi: 10.1084/jem.171.2.427

CD8 is required during positive selection of CD4-/CD8+ T cells

PMCID: PMC2187717  PMID: 1968084

Abstract

Interactions between self-MHC molecules and T cells are necessary for the proper development of mature T cells, in part due to an absolute requirement for self-MHC-TCR interactions. Recently, we showed that CD4- mediated interactions also participate in shaping the T cell repertoire during thymic maturation. We now examine the possible role of the CD8 molecule during in vivo T cell development. Our results demonstrate that perinatal thymi treated with intact anti-CD8 mAb fail to generate CD8 single-positive T cells, while the generation of the other main phenotypes remains unchanged. Most importantly, the use of F(ab')2 anti- CD8 mAb fragments gave identical results, i.e., lack of generation of CD4-/CD8+ cells, with no effect on the generation of CD4+/CD8+. Furthermore, selective blocking of one CD8 allele with F(ab')2 mAbs in F1 mice expressing both CD8 alleles did not interfere with the development of CD4-/CD8+ cells, demonstrating that the absence of CD8+ T cells in homozygous mice is not due to depletion, but rather is caused by a lack of positive selection. This is most likely attributable to a deficient CD8-MHC class I interaction. Our findings strongly advocate that CD8 molecules are vital to the selection process that leads to the development of mature single-positive CD8 T cells.

Full Text

The Full Text of this article is available as a PDF (874.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg L. J., Fazekas de St Groth B., Pullen A. M., Davis M. M. Phenotypic differences between alpha beta versus beta T-cell receptor transgenic mice undergoing negative selection. Nature. 1989 Aug 17;340(6234):559–562. doi: 10.1038/340559a0. [DOI] [PubMed] [Google Scholar]
  2. Bevan M. J. In a radiation chimaera, host H-2 antigens determine immune responsiveness of donor cytotoxic cells. Nature. 1977 Sep 29;269(5627):417–418. doi: 10.1038/269417a0. [DOI] [PubMed] [Google Scholar]
  3. Blue M. L., Hafler D. A., Craig K. A., Levine H., Schlossman S. F. Phosphorylation of CD4 and CD8 molecules following T cell triggering. J Immunol. 1987 Dec 15;139(12):3949–3954. [PubMed] [Google Scholar]
  4. Davis M. M., Bjorkman P. J. T-cell antigen receptor genes and T-cell recognition. Nature. 1988 Aug 4;334(6181):395–402. doi: 10.1038/334395a0. [DOI] [PubMed] [Google Scholar]
  5. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  6. Emmrich F., Kanz L., Eichmann K. Cross-linking of the T cell receptor complex with the subset-specific differentiation antigen stimulates interleukin 2 receptor expression in human CD4 and CD8 T cells. Eur J Immunol. 1987 Apr;17(4):529–534. doi: 10.1002/eji.1830170415. [DOI] [PubMed] [Google Scholar]
  7. Fathman C. G., Small M., Herzenberg L. A., Weissman I. L. Thymus cell maturation. II. Differentiation of three "mature" subclasses in vivo. Cell Immunol. 1975 Jan;15(1):109–128. doi: 10.1016/0008-8749(75)90169-0. [DOI] [PubMed] [Google Scholar]
  8. Fowlkes B. J., Edison L., Mathieson B. J., Chused T. M. Early T lymphocytes. Differentiation in vivo of adult intrathymic precursor cells. J Exp Med. 1985 Sep 1;162(3):802–822. doi: 10.1084/jem.162.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fowlkes B. J., Schwartz R. H., Pardoll D. M. Deletion of self-reactive thymocytes occurs at a CD4+8+ precursor stage. Nature. 1988 Aug 18;334(6183):620–623. doi: 10.1038/334620a0. [DOI] [PubMed] [Google Scholar]
  10. Gutstein N. L., Wofsy D. Administration of F(ab')2 fragments of monoclonal antibody to L3T4 inhibits humoral immunity in mice without depleting L3T4+ cells. J Immunol. 1986 Dec 1;137(11):3414–3419. [PubMed] [Google Scholar]
  11. Janeway C. A., Jr T-cell development. Accessories or coreceptors? Nature. 1988 Sep 15;335(6187):208–210. doi: 10.1038/335208a0. [DOI] [PubMed] [Google Scholar]
  12. Kappler J. W., Roehm N., Marrack P. T cell tolerance by clonal elimination in the thymus. Cell. 1987 Apr 24;49(2):273–280. doi: 10.1016/0092-8674(87)90568-x. [DOI] [PubMed] [Google Scholar]
  13. Kisielow P., Blüthmann H., Staerz U. D., Steinmetz M., von Boehmer H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature. 1988 Jun 23;333(6175):742–746. doi: 10.1038/333742a0. [DOI] [PubMed] [Google Scholar]
  14. Kisielow P., Teh H. S., Blüthmann H., von Boehmer H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature. 1988 Oct 20;335(6192):730–733. doi: 10.1038/335730a0. [DOI] [PubMed] [Google Scholar]
  15. Kruisbeek A. M., Mond J. J., Fowlkes B. J., Carmen J. A., Bridges S., Longo D. L. Absence of the Lyt-2-,L3T4+ lineage of T cells in mice treated neonatally with anti-I-A correlates with absence of intrathymic I-A-bearing antigen-presenting cell function. J Exp Med. 1985 May 1;161(5):1029–1047. doi: 10.1084/jem.161.5.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kubo R. T., Born W., Kappler J. W., Marrack P., Pigeon M. Characterization of a monoclonal antibody which detects all murine alpha beta T cell receptors. J Immunol. 1989 Apr 15;142(8):2736–2742. [PubMed] [Google Scholar]
  17. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  18. Ledbetter J. A., Seaman W. E., Tsu T. T., Herzenberg L. A. Lyt-2 and lyt-3 antigens are on two different polypeptide subunits linked by disulfide bonds. Relationship of subunits to T cell cytolytic activity. J Exp Med. 1981 Jun 1;153(6):1503–1516. doi: 10.1084/jem.153.6.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MacDonald H. R., Hengartner H., Pedrazzini T. Intrathymic deletion of self-reactive cells prevented by neonatal anti-CD4 antibody treatment. Nature. 1988 Sep 8;335(6186):174–176. doi: 10.1038/335174a0. [DOI] [PubMed] [Google Scholar]
  21. Marrack P., Kushnir E., Born W., McDuffie M., Kappler J. The development of helper T cell precursors in mouse thymus. J Immunol. 1988 Apr 15;140(8):2508–2514. [PubMed] [Google Scholar]
  22. Marusić-Galesić S., Longo D. L., Kruisbeek A. M. Preferential differentiation of T cell receptor specificities based on the MHC glycoproteins encountered during development. Evidence for positive selection. J Exp Med. 1989 May 1;169(5):1619–1630. doi: 10.1084/jem.169.5.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maruŝić-Galesić S., Stephany D. A., Longo D. L., Kruisbeek A. M. Development of CD4-CD8+ cytotoxic T cells requires interactions with class I MHC determinants. Nature. 1988 May 12;333(6169):180–183. doi: 10.1038/333180a0. [DOI] [PubMed] [Google Scholar]
  24. Ramsdell F., Fowlkes B. J. Engagement of CD4 and CD8 accessory molecules is required for T cell maturation. J Immunol. 1989 Sep 1;143(5):1467–1471. [PubMed] [Google Scholar]
  25. Sarmiento M., Glasebrook A. L., Fitch F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol. 1980 Dec;125(6):2665–2672. [PubMed] [Google Scholar]
  26. Schrezenmeier H., Fleischer B. A regulatory role for the CD4 and CD8 molecules in T cell activation. J Immunol. 1988 Jul 15;141(2):398–403. [PubMed] [Google Scholar]
  27. Scollay R., Bartlett P., Shortman K. T cell development in the adult murine thymus: changes in the expression of the surface antigens Ly2, L3T4 and B2A2 during development from early precursor cells to emigrants. Immunol Rev. 1984 Dec;82:79–103. doi: 10.1111/j.1600-065x.1984.tb01118.x. [DOI] [PubMed] [Google Scholar]
  28. Smith L. CD4+ murine T cells develop from CD8+ precursors in vivo. Nature. 1987 Apr 23;326(6115):798–800. doi: 10.1038/326798a0. [DOI] [PubMed] [Google Scholar]
  29. Swain S. L. T cell subsets and the recognition of MHC class. Immunol Rev. 1983;74:129–142. doi: 10.1111/j.1600-065x.1983.tb01087.x. [DOI] [PubMed] [Google Scholar]
  30. Teh H. S., Kishi H., Scott B., Von Boehmer H. Deletion of autospecific T cells in T cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J Exp Med. 1989 Mar 1;169(3):795–806. doi: 10.1084/jem.169.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Teh H. S., Kisielow P., Scott B., Kishi H., Uematsu Y., Blüthmann H., von Boehmer H. Thymic major histocompatibility complex antigens and the alpha beta T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature. 1988 Sep 15;335(6187):229–233. doi: 10.1038/335229a0. [DOI] [PubMed] [Google Scholar]
  32. Veillette A., Bookman M. A., Horak E. M., Bolen J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 1988 Oct 21;55(2):301–308. doi: 10.1016/0092-8674(88)90053-0. [DOI] [PubMed] [Google Scholar]
  33. Veillette A., Zúiga-Pflücker J. C., Bolen J. B., Kruisbeek A. M. Engagement of CD4 and CD8 expressed on immature thymocytes induces activation of intracellular tyrosine phosphorylation pathways. J Exp Med. 1989 Nov 1;170(5):1671–1680. doi: 10.1084/jem.170.5.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Walker I. D., Hogarth P. M., Murray B. J., Lovering K. E., Classon B. J., Chambers G. W., McKenzie I. F. Ly antigens associated with T cell recognition and effector function. Immunol Rev. 1984 Dec;82:47–77. doi: 10.1111/j.1600-065x.1984.tb01117.x. [DOI] [PubMed] [Google Scholar]
  35. Zinkernagel R. M., Callahan G. N., Althage A., Cooper S., Klein P. A., Klein J. On the thymus in the differentiation of "H-2 self-recognition" by T cells: evidence for dual recognition? J Exp Med. 1978 Mar 1;147(3):882–896. doi: 10.1084/jem.147.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zinkernagel R. M., Doherty P. C. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature. 1974 Oct 11;251(5475):547–548. doi: 10.1038/251547a0. [DOI] [PubMed] [Google Scholar]
  37. Zuñiga-Pflücker J. C., McCarthy S. A., Weston M., Longo D. L., Singer A., Kruisbeek A. M. Role of CD4 in thymocyte selection and maturation. J Exp Med. 1989 Jun 1;169(6):2085–2096. doi: 10.1084/jem.169.6.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES