Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Aug 1;162(2):625–636. doi: 10.1084/jem.162.2.625

Dendritic cells that have interacted with antigen are targets for natural killer cells

PMCID: PMC2187744  PMID: 3160806

Abstract

Natural killer (NK) cells (poly I:C induced, x-ray resistant, nonadherent, Thy-1-, Ly-1.1-, Ly-2.1-, anti-asialo GM1-positive, and cytotoxic for YAC-1) suppressed T lymphocyte proliferation in mixed lymphocyte reaction (MLR) and autologous MLR cultures. Dendritic cells (DC) were required for proliferation of lymphocytes in both responses. The question whether lymphocytes or DC were the targets for NK cells was resolved by taking advantage of the fact that NK cells, but not DC, lose activity after 24 h in culture. Three findings indicate that DC, not lymphocytes, are targets for NK cells. First, responses suppressed by NK cells were fully restored by adding small numbers of DC to cultures 24 h after NK cells had been added. Second, DC incubated alone with NK cells and antigen for 24 h did not stimulate proliferation of lymphocytes. Third, lymphocytes incubated alone with NK cells for 24 h proliferated normally when DC were added. Additional experiments showed that DC became targets only after interaction with antigen. Thus, we suggest that NK cells may regulate lymphocyte proliferation by monitoring antigen presentation by DC.

Full Text

The Full Text of this article is available as a PDF (721.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abruzzo L. V., Rowley D. A. Homeostasis of the antibody response: immunoregulation by NK cells. Science. 1983 Nov 11;222(4624):581–585. doi: 10.1126/science.6685343. [DOI] [PubMed] [Google Scholar]
  2. Bukowski J. F., Warner J. F., Dennert G., Welsh R. M. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J Exp Med. 1985 Jan 1;161(1):40–52. doi: 10.1084/jem.161.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burton R. C., Winn H. J. Studies on natural killer (NK) cells. I. NK cell specific antibodies in CE anti-CBA serum. J Immunol. 1981 May;126(5):1985–1989. [PubMed] [Google Scholar]
  4. De Maeyer-Guignard J., Cachard A., De Maeyer E. Delayed-type hypersensitivity to sheep red blood cells: inhibition of sensitization by interferon. Science. 1975 Nov 7;190(4214):574–576. doi: 10.1126/science.1188355. [DOI] [PubMed] [Google Scholar]
  5. Djeu J. Y., Heinbaugh J. A., Holden H. T., Herberman R. B. Augmentation of mouse natural killer cell activity by interferon and interferon inducers. J Immunol. 1979 Jan;122(1):175–181. [PubMed] [Google Scholar]
  6. Djeu J. Y., Huang K. Y., Herberman R. B. Augmentation of mouse natural killer activity and induction of interferon by tumor cells in vivo. J Exp Med. 1980 Apr 1;151(4):781–789. doi: 10.1084/jem.151.4.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorelik E., Wiltrout R. H., Okumura K., Habu S., Herberman R. B. Role of NK cells in the control of metastatic spread and growth of tumor cells in mice. Int J Cancer. 1982 Jul 15;30(1):107–112. doi: 10.1002/ijc.2910300118. [DOI] [PubMed] [Google Scholar]
  8. Habu S., Akamatsu K., Tamaoki N., Okumura K. In vivo significance of NK cell on resistance against virus (HSV-1) infections in mice. J Immunol. 1984 Nov;133(5):2743–2747. [PubMed] [Google Scholar]
  9. Habu S., Fukui H., Shimamura K., Kasai M., Nagai Y., Okumura K., Tamaoki N. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol. 1981 Jul;127(1):34–38. [PubMed] [Google Scholar]
  10. Hanna N. Expression of metastatic potential of tumor cells in young nude mice is correlated with low levels of natural killer cell-mediated cytotoxicity. Int J Cancer. 1980 Nov 15;26(5):675–680. doi: 10.1002/ijc.2910260521. [DOI] [PubMed] [Google Scholar]
  11. Herberman R. B., Holden H. T. Natural cell-mediated immunity. Adv Cancer Res. 1978;27:305–377. doi: 10.1016/s0065-230x(08)60936-7. [DOI] [PubMed] [Google Scholar]
  12. Herberman R. B., Holden H. T. Natural killer cells as antitumor effector cells. J Natl Cancer Inst. 1979 Mar;62(3):441–445. doi: 10.1093/jnci/62.3.441. [DOI] [PubMed] [Google Scholar]
  13. Hirt H. M., Becker H., Kirchner H. Induction of interferon production in mouse spleen cell cultures by corynebacterium parvum. Cell Immunol. 1978 Jun;38(1):168–175. doi: 10.1016/0008-8749(78)90042-4. [DOI] [PubMed] [Google Scholar]
  14. Holmberg L. A., Miller B. A., Ault K. A. The effect of natural killer cells on the development of syngeneic hematopoietic progenitors. J Immunol. 1984 Dec;133(6):2933–2939. [PubMed] [Google Scholar]
  15. Huber B., Devinsky O., Gershon R. K., Cantor H. Cell-mediated immunity: delayed-type hypersensitivity and cytotoxic responses are mediated by different T-cell subclasses. J Exp Med. 1976 Jun 1;143(6):1534–1539. doi: 10.1084/jem.143.6.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inaba K., Steinman R. M. Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J Exp Med. 1984 Dec 1;160(6):1717–1735. doi: 10.1084/jem.160.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Inaba K., Steinman R. M., Van Voorhis W. C., Muramatsu S. Dendritic cells are critical accessory cells for thymus-dependent antibody responses in mouse and in man. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6041–6045. doi: 10.1073/pnas.80.19.6041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kettman J. R. Modulation of the acquisition and expression of immunity by Tilorone: I. Delayed-type hypersensitivity responses. Immunopharmacology. 1978 Dec;1(1):21–28. doi: 10.1016/0162-3109(78)90005-x. [DOI] [PubMed] [Google Scholar]
  19. Kiessling R., Wigzell H. An analysis of the murine NK cell as to structure, function and biological relevance. Immunol Rev. 1979;44:165–208. doi: 10.1111/j.1600-065x.1979.tb00270.x. [DOI] [PubMed] [Google Scholar]
  20. Mills C. D., North R. J. Expression of passively transferred immunity against an established tumor depends on generation of cytolytic T cells in recipient. Inhibition by suppressor T cells. J Exp Med. 1983 May 1;157(5):1448–1460. doi: 10.1084/jem.157.5.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyasaka N., Darnell B., Baron S., Talal N. Interleukin 2 enhances natural killing of normal lymphocytes. Cell Immunol. 1984 Mar;84(1):154–162. doi: 10.1016/0008-8749(84)90086-8. [DOI] [PubMed] [Google Scholar]
  22. North R. J., Bursuker I. Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells. J Exp Med. 1984 May 1;159(5):1295–1311. doi: 10.1084/jem.159.5.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nussenzweig M. C., Steinman R. M., Witmer M. D., Gutchinov B. A monoclonal antibody specific for mouse dendritic cells. Proc Natl Acad Sci U S A. 1982 Jan;79(1):161–165. doi: 10.1073/pnas.79.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ojo E., Haller O., Wigzell H. Corynebacterium parvum-induced peritoneal exudate cells with rapid cytolytic activity against tumour cells are non-phagocytic cells with characteristics of natural killer cells. Scand J Immunol. 1978;8(3):215–222. doi: 10.1111/j.1365-3083.1978.tb00513.x. [DOI] [PubMed] [Google Scholar]
  25. Roder J. C., Rosén A., Fenyö E. M., Troy F. A. Target-effector interaction in the natural killer cell system: isolation of target structures. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1405–1409. doi: 10.1073/pnas.76.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steinman R. M., Gutchinov B., Witmer M. D., Nussenzweig M. C. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J Exp Med. 1983 Feb 1;157(2):613–627. doi: 10.1084/jem.157.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stern P., Gidlund M., Orn A., Wigzell H. Natural killer cells mediate lysis of embryonal carcinoma cells lacking MHC. Nature. 1980 May 29;285(5763):341–342. doi: 10.1038/285341a0. [DOI] [PubMed] [Google Scholar]
  28. Trinchieri G., Matsumoto-Kobayashi M., Clark S. C., Seehra J., London L., Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984 Oct 1;160(4):1147–1169. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Urban J. L., Burton R. C., Holland J. M., Kripke M. L., Schreiber H. Mechanisms of syngeneic tumor rejection. Susceptibility of host-selected progressor variants to various immunological effector cells. J Exp Med. 1982 Feb 1;155(2):557–573. doi: 10.1084/jem.155.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vodinelich L., Sutherland R., Schneider C., Newman R., Greaves M. Receptor for transferrin may be a "target" structure for natural killer cells. Proc Natl Acad Sci U S A. 1983 Feb;80(3):835–839. doi: 10.1073/pnas.80.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Welsh R. M. Natural cell-mediated immunity during viral infections. Curr Top Microbiol Immunol. 1981;92:83–106. doi: 10.1007/978-3-642-68069-4_6. [DOI] [PubMed] [Google Scholar]
  32. Wolfe S. A., Tracey D. E., Henney C. S. Introduction of "natural" killer' cells by BCG. Nature. 1976 Aug 12;262(5569):584–586. doi: 10.1038/262584a0. [DOI] [PubMed] [Google Scholar]
  33. Wright S. C., Weitzen M. L., Kahle R., Granger G. A., Bonavida B. Studies on the mechanism of natural killer cytotoxicity. II. coculture of human PBL with NK-sensitive or resistant cell lines stimulates release of natural killer cytotoxic factors (NKCF) selectively cytotoxic to NK-sensitive target cells. J Immunol. 1983 May;130(5):2479–2483. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES