Abstract
Mouse fetuses with trisomy 16 have severe abnormalities of several hematopoietic stem cell and precursor populations. The thymus is extremely hypoplastic, with a greater than or equal to 80% reduction in the number of thymocytes. This cellular deficiency appears to be the result of a deficiency in the number of precursor cells in the early thymus, since the rate of proliferation of thymocytes in explanted day- 14 thymuses was normal. However, the functional maturation of thymocytes was delayed in vitro in day-17 organ explants, although the maximal response to the mitogenic and interleukin 2-stimulating effects of concanavalin A are quantitatively normal. B cells and pre-B cells in the fetal liver were moderately decreased, but the ability of fetal liver cells to be transformed by Abelson murine leukemia virus was nearly totally lost. There were also significant relative and absolute decreases in the number of spleen, culture, and erythroid colony- forming units (CFU-S, CFU-C, CFU-E) and of erythroid burst-forming units (BFU-E) in the trisomic liver, and the trisomic animals were anemic with small spleens and livers. However, unlike other genetically caused anemias, there was no reduction in the number of germ cells. The hematopoietic abnormalities in the trisomy 16 mouse, involving the lymphoid, myeloid, and erythroid cell lineages, are much more generalized than the abnormalities in any of the other described genetically caused immunodeficiencies or anemias in the mouse. They are also more severe than those in human trisomy 21 (Down syndrome), for which mouse trisomy 16 is a genetic model, but there does exist an interesting parallel between the thymic abnormalities in the two species.
Full Text
The Full Text of this article is available as a PDF (1,010.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asamoto H., Mandel T. E. Thymus in mice bearing the Steel mutation. Morphologic studies on fetal, neonatal, organ-cultured, and grafted fetal thymus. Lab Invest. 1981 Nov;45(5):418–426. [PubMed] [Google Scholar]
- Beckstead J. H. The evaluation of human lymph nodes, using plastic sections and enzyme histochemistry. Am J Clin Pathol. 1983 Aug;80(2):131–139. doi: 10.1093/ajcp/80.2.131. [DOI] [PubMed] [Google Scholar]
- Bosma G. C., Custer R. P., Bosma M. J. A severe combined immunodeficiency mutation in the mouse. Nature. 1983 Feb 10;301(5900):527–530. doi: 10.1038/301527a0. [DOI] [PubMed] [Google Scholar]
- Burgio G. R., Ugazio A. G., Nespoli L., Marcioni A. F., Bottelli A. M., Pasquali F. Derangements of immunoglobulin levels, phytohemagglutinin responsiveness and T and B cell markers in Down's syndrome at different ages. Eur J Immunol. 1975 Sep;5(9):600–603. doi: 10.1002/eji.1830050904. [DOI] [PubMed] [Google Scholar]
- Burgio G. R., Ugazio A., Nespoli L., Maccario R. Down syndrome: a model of immunodeficiency. Birth Defects Orig Artic Ser. 1983;19(3):325–327. [PubMed] [Google Scholar]
- Caplan B., Rothenberg E. High-level secretion of interleukin 2 by a subset of proliferating thymic lymphoblasts. J Immunol. 1984 Oct;133(4):1983–1991. [PubMed] [Google Scholar]
- Cooper M. C., Levy J., Cantor L. N., Marks P. A., Rifkind R. A. The effect of erythropoietin on colonial growth of erythroid precursor cells in vitro. Proc Natl Acad Sci U S A. 1974 May;71(5):1677–1680. doi: 10.1073/pnas.71.5.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox D. R., Epstein C. J. Comparative gene mapping of human chromosome 21 and mouse chromosome 16. Ann N Y Acad Sci. 1985;450:169–177. doi: 10.1111/j.1749-6632.1985.tb21491.x. [DOI] [PubMed] [Google Scholar]
- Cox D. R., Epstein L. B., Epstein C. J. Genes coding for sensitivity to interferon (IfRec) and soluble superoxide dismutase (SOD-1) are linked in mouse and man and map to mouse chromosome 16. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2168–2172. doi: 10.1073/pnas.77.4.2168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox D. R., Smith S. A., Epstein L. B., Epstein C. J. Mouse trisomy 16 as an animal model of human trisomy 21 (Down syndrome): production of viable trisomy 16 diploid mouse chimeras. Dev Biol. 1984 Feb;101(2):416–424. doi: 10.1016/0012-1606(84)90156-8. [DOI] [PubMed] [Google Scholar]
- Epstein C. J., Cox D. R., Epstein L. B. Mouse trisomy 16: an animal model of human trisomy 21 (Down syndrome). Ann N Y Acad Sci. 1985;450:157–168. doi: 10.1111/j.1749-6632.1985.tb21490.x. [DOI] [PubMed] [Google Scholar]
- Epstein L. B., Cox D. R., Epstein C. J. Assignment of the genes for sensitivity to interferon [IfRec] and soluble superoxide dismutase [SOD-1] to mouse chromosome. Ann N Y Acad Sci. 1980;350:171–173. doi: 10.1111/j.1749-6632.1980.tb20618.x. [DOI] [PubMed] [Google Scholar]
- Epstein L. B., Epstein C. J. T-lymphocyte function and sensitivity to interferon in trisomy 21. Cell Immunol. 1980 May;51(2):303–318. doi: 10.1016/0008-8749(80)90262-2. [DOI] [PubMed] [Google Scholar]
- Fabris N., Mocchegiani E., Amadio L., Zannotti M., Licastro F., Franceschi C. Thymic hormone deficiency in normal ageing and Down's syndrome: is there a primary failure of the thymus? Lancet. 1984 May 5;1(8384):983–986. doi: 10.1016/s0140-6736(84)92325-0. [DOI] [PubMed] [Google Scholar]
- Francke U., Taggart R. T. Assignment of the gene for cytoplasmic superoxide dismutase (Sod-1) to a region of chromosome 16 and of Hprt to a region of the X chromosome in the mouse. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5230–5233. doi: 10.1073/pnas.76.10.5230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
- Gropp A., Giers D., Kolbus U. Trisomy in the fetal backcross progeny of male and female metacentric heterozygotes of the mouse. i. Cytogenet Cell Genet. 1974;13(6):511–535. doi: 10.1159/000130304. [DOI] [PubMed] [Google Scholar]
- Gropp A., Winking H., Herbst E. W., Claussen C. P. Murine trisomy: developmental profiles of the embryo, and isolation of trisomic cellular systems. J Exp Zool. 1983 Nov;228(2):253–269. doi: 10.1002/jez.1402280210. [DOI] [PubMed] [Google Scholar]
- Hsia D. Y., Smith G. F., Dowben R. M., Justice P. Down's syndrome. A critical review of the biochemical and immunological data. Am J Dis Child. 1971 Feb;121(2):153–161. [PubMed] [Google Scholar]
- Karttunen R., Nurmi T., Ilonen J., Surcel H. M. Cell-mediated immunodeficiency in Down's syndrome: normal IL-2 production but inverted ratio of T cell subsets. Clin Exp Immunol. 1984 Feb;55(2):257–263. [PMC free article] [PubMed] [Google Scholar]
- Landreth K. S., Kincade P. W., Lee G., Harrison D. E. B lymphocyte precursors in embryonic and adult W anemic mice. J Immunol. 1984 Jun;132(6):2724–2729. [PubMed] [Google Scholar]
- Levin S., Schlesinger M., Handzel Z., Hahn T., Altman Y., Czernobilsky B., Boss J. Thymic deficiency in Down's syndrome. Pediatrics. 1979 Jan;63(1):80–87. [PubMed] [Google Scholar]
- Martin G. R., Evans M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1441–1445. doi: 10.1073/pnas.72.4.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyabara S., Gropp A., Winking H. Trisomy 16 in the mouse fetus associated with generalized edema and cardiovascular and urinary tract anomalies. Teratology. 1982 Jun;25(3):369–380. doi: 10.1002/tera.1420250314. [DOI] [PubMed] [Google Scholar]
- Moore M. A., Metcalf D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol. 1970 Mar;18(3):279–296. doi: 10.1111/j.1365-2141.1970.tb01443.x. [DOI] [PubMed] [Google Scholar]
- Nadeau J. H., Taylor B. A. Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci U S A. 1984 Feb;81(3):814–818. doi: 10.1073/pnas.81.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paige C. J., Skarvall H. Plaque formation by B cell colonies. J Immunol Methods. 1982;52(1):51–61. doi: 10.1016/0022-1759(82)90349-0. [DOI] [PubMed] [Google Scholar]
- Paige C. J. Surface immunoglobulin-negative B-cell precursors detected by formation of antibody-secreting colonies in agar. Nature. 1983 Apr 21;302(5910):711–713. doi: 10.1038/302711a0. [DOI] [PubMed] [Google Scholar]
- Rich I. N., Kubanek B. The ontogeny of erythropoiesis in the mouse detected by the erythroid colony-forming technique. I. Hepatic and maternal erythropoiesis. J Embryol Exp Morphol. 1979 Apr;50:57–74. [PubMed] [Google Scholar]
- Robison L. L., Nesbit M. E., Jr, Sather H. N., Level C., Shahidi N., Kennedy A., Hammond D. Down syndrome and acute leukemia in children: a 10-year retrospective survey from Childrens Cancer Study Group. J Pediatr. 1984 Aug;105(2):235–242. doi: 10.1016/s0022-3476(84)80119-5. [DOI] [PubMed] [Google Scholar]
- Rosenberg N. Abelson leukemia virus. Curr Top Microbiol Immunol. 1982;101:95–126. doi: 10.1007/978-3-642-68654-2_5. [DOI] [PubMed] [Google Scholar]
- Rosenberg N., Baltimore D. A quantitative assay for transformation of bone marrow cells by Abelson murine leukemia virus. J Exp Med. 1976 Jun 1;143(6):1453–1463. doi: 10.1084/jem.143.6.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Standen G., Philip M. A., Fletcher J. Reduced number of peripheral blood granulocytic progenitor cells in patients with Down's syndrome. Br J Haematol. 1979 Jul;42(3):417–423. doi: 10.1111/j.1365-2141.1979.tb01150.x. [DOI] [PubMed] [Google Scholar]
- TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
- Wortis H. H., Burkly L., Hughes D., Roschelle S., Waneck G. Lack of mature B cells in nude mice with X-linked immune deficiency. J Exp Med. 1982 Mar 1;155(3):903–913. doi: 10.1084/jem.155.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]