Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Aug 1;162(2):444–458. doi: 10.1084/jem.162.2.444

Major histocompatibility complex restriction fragment length polymorphisms define three diabetogenic haplotypes in BB and BBN rats

PMCID: PMC2187752  PMID: 2991415

Abstract

Class I and II major histocompatibility complex (MHC) probes can be used to subdivide diabetes-prone BB rats and their BBN control strain, coderived from the same outbred colony by selection against diabetes. Class II probes (A-alpha in particular) distinguish four restriction fragment length polymorphisms (RFLP), termed 1a, 1b, 2a, and 2b, in the BBN population, only one of which (2a) is found in BB rats. The degree of class II RFLP in the population studied is RT1.B-alpha greater than or equal to RT1.B-beta greater than RT1.D-alpha greater than or equal to RT1.D-beta, suggesting that intra-class II region dynamics may be different in rats compared with mice. A class I probe (S16) absolutely distinguished BB from BBN rats, since all BB rats exhibit an RFLP pattern termed 2a0, while 2a BBN rats can be subdivided into 2a1 and 2a2 forms. Serologic evaluation has shown that 2a0, 2a1, and 2a2 rats express RT1.AuBu, 1a rats express RT1.AaDa, and 1b rats express neither RT1a nor RT1u at the loci tested. A breeding study was carried out to determine the diabetogenicity of the MHC-defined RFLP's. As expected, the BB-derived 2a0 is diabetogenic. The BBN-derived 2a1 and 2a2 RFLPs are also diabetogenic, while 1a and 1b rats do not carry MHC-linked diabetogenic genes. The MHC-linked diabetes gene acts in a functionally recessive manner, since there is a 10-fold higher incidence in homozygotes than in heterozygotes. Analysis of the RFLP patterns leads us to hypothesize that the 2a1 RFLP results from a crossover between 1a and 2a0 MHCs and that the diabetogenic MHC-linked gene is on the class II side of Qa and T1. The availability of three diabetogenic MHC haplotypes should help localize the MHC-linked diabetogenic gene of rats.

Full Text

The Full Text of this article is available as a PDF (1,003.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alinaji, Silvers W. K., Bellgrau D., Anderson A. O., Plotkin S., Barker C. F. Prevention of diabetes in rats by bone marrow transplantation. Ann Surg. 1981 Sep;194(3):328–338. doi: 10.1097/00000658-198109000-00011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buse J. B., Ben-Nun A., Klein K. A., Eisenbarth G. S., Seidman J. G., Jackson R. A. Specific class II histocompatibility gene polymorphism in BB rats. Diabetes. 1984 Jul;33(7):700–703. doi: 10.2337/diab.33.7.700. [DOI] [PubMed] [Google Scholar]
  3. Buse J. B., Chaplin D. D., Ben-Nun A., Klein K. A., Eisenbarth G. S., Seidman J. G., Jackson R. A. Class I, II and III major histocompatibility complex gene polymorphisms in BB rats. Diabetologia. 1984 Jul;27 (Suppl):77–79. doi: 10.1007/BF00275652. [DOI] [PubMed] [Google Scholar]
  4. Chaplin D. D., Woods D. E., Whitehead A. S., Goldberger G., Colten H. R., Seidman J. G. Molecular map of the murine S region. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6947–6951. doi: 10.1073/pnas.80.22.6947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colle E., Guttmann R. D., Seemayer T. A., Michel F. Spontaneous diabetes mellitus syndrome in the rat. IV. Immunogenetic interactions of MHC and non-MHC components of the syndrome. Metabolism. 1983 Jul;32(7 Suppl 1):54–61. doi: 10.1016/s0026-0495(83)80012-2. [DOI] [PubMed] [Google Scholar]
  6. Dyrberg T., Poussier P., Nakhooda F., Marliss E. B., Lernmark A. Islet cell surface and lymphocyte antibodies often precede the spontaneous diabetes in the BB rat. Diabetologia. 1984 Feb;26(2):159–165. doi: 10.1007/BF00281126. [DOI] [PubMed] [Google Scholar]
  7. Evans G. A., Margulies D. H., Camerini-Otero R. D., Ozato K., Seidman J. G. Structure and expression of a mouse major histocompatibility antigen gene, H-2Ld. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1994–1998. doi: 10.1073/pnas.79.6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Francfort J. W., Barker C. F., Kimura H., Silvers W. K., Frohman M., Naji A. Increased incidence of Ia antigen-bearing T lymphocytes in the spontaneously diabetic BB rat. J Immunol. 1985 Mar;134(3):1577–1582. [PubMed] [Google Scholar]
  9. Gill T. J., 3rd, Cramer D. V., Kunz H. W., Misra D. N. Structure and function of the major histocompatibility complex of the rat. J Immunogenet. 1983 Aug;10(4):261–273. doi: 10.1111/j.1744-313x.1983.tb00804.x. [DOI] [PubMed] [Google Scholar]
  10. Gorsuch A. N., Spencer K. M., Lister J., Wolf E., Bottazzo G. F., Cudworth A. G. Can future type I diabetes be predicted? A study in families of affected children. Diabetes. 1982 Oct;31(10):862–866. doi: 10.2337/diab.31.10.862. [DOI] [PubMed] [Google Scholar]
  11. Günther E., Wurst W., Wonigeit K., Epplen J. T. Analysis of the rat major histocompatibility system by Southern blot hybridization. J Immunol. 1985 Feb;134(2):1257–1261. [PubMed] [Google Scholar]
  12. Hyldig-Nielsen J. J., Schenning L., Hammerling U., Widmark E., Heldin E., Lind P., Servenius B., Lund T., Flavell R., Lee J. S. The complete nucleotide sequence of the I-E alpha d immune response gene. Nucleic Acids Res. 1983 Aug 11;11(15):5055–5071. doi: 10.1093/nar/11.15.5055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jackson R. A., Buse J. B., Rifai R., Pelletier D., Milford E. L., Carpenter C. B., Eisenbarth G. S., Williams R. M. Two genes required for diabetes in BB rats. Evidence from cyclical intercrosses and backcrosses. J Exp Med. 1984 Jun 1;159(6):1629–1636. doi: 10.1084/jem.159.6.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackson R., Kadison P., Buse J., Rassi N., Jegasothy B., Eisenbarth G. S. Lymphocyte abnormalities in the BB rat. Metabolism. 1983 Jul;32(7 Suppl 1):83–86. doi: 10.1016/s0026-0495(83)80017-1. [DOI] [PubMed] [Google Scholar]
  15. Kastern W. H., Lernmark A., Lyngsie L. Isolation of rat major histocompatibility genes expressed in pancreatic beta-cells. Acta Biol Med Ger. 1982;41(12):1135–1138. [PubMed] [Google Scholar]
  16. Klein J., Juretic A., Baxevanis C. N., Nagy Z. A. The traditional and a new version of the mouse H-2 complex. Nature. 1981 Jun 11;291(5815):455–460. doi: 10.1038/291455a0. [DOI] [PubMed] [Google Scholar]
  17. Koevary S., Rossini A., Stoller W., Chick W., Williams R. M. Passive transfer of diabetes in the BB/W rat. Science. 1983 May 13;220(4598):727–728. doi: 10.1126/science.6836309. [DOI] [PubMed] [Google Scholar]
  18. Kronenberg M., Steinmetz M., Kobori J., Kraig E., Kapp J. A., Pierce C. W., Sorensen C. M., Suzuki G., Tada T., Hood L. RNA transcripts for I-J polypeptides are apparently not encoded between the I-A and I-E subregions of the murine major histocompatibility complex. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5704–5708. doi: 10.1073/pnas.80.18.5704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Larhammar D., Schenning L., Gustafsson K., Wiman K., Claesson L., Rask L., Peterson P. A. Complete amino acid sequence of an HLA-DR antigen-like beta chain as predicted from the nucleotide sequence: similarities with immunoglobulins and HLA-A, -B, and -C antigens. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3687–3691. doi: 10.1073/pnas.79.12.3687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Like A. A., Butler L., Williams R. M., Appel M. C., Weringer E. J., Rossini A. A. Spontaneous autoimmune diabetes mellitus in the BB rat. Diabetes. 1982;31(Suppl 1 Pt 2):7–13. doi: 10.2337/diab.31.1.s7. [DOI] [PubMed] [Google Scholar]
  21. Logothetopoulos J., Valiquette N., Madura E., Cvet D. The onset and progression of pancreatic insulitis in the overt, spontaneously diabetic, young adult BB rat studied by pancreatic biopsy. Diabetes. 1984 Jan;33(1):33–36. doi: 10.2337/diab.33.1.33. [DOI] [PubMed] [Google Scholar]
  22. Matis L. A., Glimcher L. H., Paul W. E., Schwartz R. H. Magnitude of response of histocompatibility-restricted T-cell clones is a function of the product of the concentrations of antigen and Ia molecules. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6019–6023. doi: 10.1073/pnas.80.19.6019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McNicholas J. M., Murphy D. B., Matis L. A., Schwartz R. H., Lerner E. A., Janeway C. A., Jr, Jones P. P. Immune response gene function correlates with the expression of an Ia antigen. I. Preferential association of certain Ae and E alpha chains results in a quantitative deficiency in expression of an Ae:E alpha complex. J Exp Med. 1982 Feb 1;155(2):490–507. doi: 10.1084/jem.155.2.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nakhooda A. F., Poussier P., Marliss E. B. Insulin and glucagon secretion in BB wistar rats with impaired glucose tolerance. Diabetologia. 1983 Jan;24(1):58–62. doi: 10.1007/BF00275949. [DOI] [PubMed] [Google Scholar]
  25. Ogata R. T., Sepich D. S. Genes for murine fourth complement component (C4) and sex-limited protein (Slp) identified by hybridization to C4- and Slp-specific cDNA. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4908–4911. doi: 10.1073/pnas.81.15.4908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sasazuki T., Nishimura Y., Muto M., Ohta N. HLA-linked genes controlling immune response and disease susceptibility. Immunol Rev. 1983;70:51–75. doi: 10.1111/j.1600-065x.1983.tb00709.x. [DOI] [PubMed] [Google Scholar]
  27. Stark O., Klöting I., Reiher K., Kohnert K. D. The major histocompatibility complex and insulin-dependent diabetes in BB rats. Acta Biol Med Ger. 1982;41(12):1129–1133. [PubMed] [Google Scholar]
  28. Steinmetz M., Hood L. Genes of the major histocompatibility complex in mouse and man. Science. 1983 Nov 18;222(4625):727–733. doi: 10.1126/science.6356354. [DOI] [PubMed] [Google Scholar]
  29. White P. C., New M. I., Dupont B. HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-450 specific for steroid 21-hydroxylation. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7505–7509. doi: 10.1073/pnas.81.23.7505. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES