Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Sep 1;162(3):993–1014. doi: 10.1084/jem.162.3.993

Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow

PMCID: PMC2187810  PMID: 4031789

Abstract

In situ studies with the mouse macrophage (M phi)-specific antibody, F4/80, have shown that resident M phi in femoral bone marrow (RBMM) form hematopoietic islands with immature myelomonocytic and erythroid cells (Hume, D. A., et al. 1983. J. Exp. Med. 158: 1522). We have isolated these islands (clusters) by collagenase digestion, purified them from single cells by velocity sedimentation, and analyzed their cellular content. The clusters, ranging from 5- to 100 cells, constituted approximately 7% of the total nucleated cells, and greater than 70% contained at least one strongly staining, F4/80+ central M phi. In comparison, less than 26% showed reactivity for alkaline phosphatase, a marker of fibroblastoid reticulum cells. Compared with the nonclustering population, clusters were enriched with RBMM, fibroblastoid cells, and immature hematopoietic cells, but depleted of mature granulocytes and erythrocytes. The RBMM population was purified from other cells in clusters by selective adherence to glass and was compared with resident peritoneal M phi (RPM) for morphology and the presence of antigens, receptors, and enzymes. RBMM spread more extensively than RPM and frequently extended delicate plasma membrane processes. These and subsequent differences were not attributable to the collagenase treatment. Both M phi populations stained positively with antibodies F4/80 and 2.4G2 (Fc receptor IgG1/2b), bore mannosyl/fucosyl receptors, and showed reactivity for acid phosphatase and nonspecific esterase I. In contrast to RPM, RBMM had no detectable Mac-1 antigen (CR3) or complement receptors, but bore higher levels of Fc receptors (IgG2a and IgG2b) and Ia antigens. In addition, RBMM possessed a novel hemagglutinin activity for unopsonized sheep erythrocytes, which was not present on RPM. RBMM showed no respiratory burst activity in response to zymosan particles, but ingested them avidly. The growth properties of clustering and nonclustered populations were compared by measurement of [3H]thymidine incorporation and progenitor assays. Cells in clusters incorporated three- to fourfold more thymidine than nonclustered cells even in the absence of exogenous growth factors, and autoradiography demonstrated that RBMM made contact with proliferating cells. In contrast, the clusters contained over threefold fewer granulocyte/M phi progenitors compared with nonclustering cells. When clusters were cultivated for up to 3 d, there was rapid outgrowth of monocytes and fibroblastoid cells. These studies demonstrate that RBMM bear a distinct morphology and phenotype.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. D., Dexter T. M. Cellular interrelationships during in vitro granulopoiesis. Differentiation. 1976 Oct 7;6(3):191–194. doi: 10.1111/j.1432-0436.1976.tb01486.x. [DOI] [PubMed] [Google Scholar]
  2. Allen T. D., Dexter T. M. Ultrastructural aspects of erythropoietic differentiation in long-term bone marrow culture. Differentiation. 1982;21(2):86–94. doi: 10.1111/j.1432-0436.1982.tb01201.x. [DOI] [PubMed] [Google Scholar]
  3. Anderson D. C., Schmalstieg F. C., Arnaout M. A., Kohl S., Tosi M. F., Dana N., Buffone G. J., Hughes B. J., Brinkley B. R., Dickey W. D. Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): common relationship to diminished cell adherence. J Clin Invest. 1984 Aug;74(2):536–551. doi: 10.1172/JCI111451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Austyn J. M., Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol. 1981 Oct;11(10):805–815. doi: 10.1002/eji.1830111013. [DOI] [PubMed] [Google Scholar]
  5. BURSTONE M. S. Histochemical demonstration of acid phosphatases with naphthol AS-phosphates. J Natl Cancer Inst. 1958 Sep;21(3):523–539. [PubMed] [Google Scholar]
  6. Beller D. I., Springer T. A., Schreiber R. D. Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med. 1982 Oct 1;156(4):1000–1009. doi: 10.1084/jem.156.4.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ben-Ishay Z., Yoffey J. M. Ultrastructural studies of erythroblastic islands of rat bone marrow. II. The resumption of erythropoiesis in erythropoietically depressed rebound marrow. Lab Invest. 1972 Jun;26(6):637–647. [PubMed] [Google Scholar]
  8. Bentley S. A. Close range cell:cell interaction required for stem cell maintenance in continuous bone marrow culture. Exp Hematol. 1981 Mar;9(3):308–312. [PubMed] [Google Scholar]
  9. Broxmeyer H. E., Platzer E. Lactoferrin acts on I-A and I-E/C antigen+ subpopulations of mouse peritoneal macrophages in the absence of T lymphocytes and other cell types to inhibit production of granulocyte-macrophage colony stimulatory factors in vitro. J Immunol. 1984 Jul;133(1):306–314. [PubMed] [Google Scholar]
  10. Dexter T. M., Moore M. A., Sheridan A. P. Maintenance of hemopoietic stem cells and production of differentiated progeny in allogeneic and semiallogeneic bone marrow chimeras in vitro. J Exp Med. 1977 Jun 1;145(6):1612–1616. doi: 10.1084/jem.145.6.1612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dexter T. M. Stromal cell associated haemopoiesis. J Cell Physiol Suppl. 1982;1:87–94. doi: 10.1002/jcp.1041130414. [DOI] [PubMed] [Google Scholar]
  12. Diamond B., Bloom B. R., Scharff M. D. The Fc receptors of primary and cultured phagocytic cells studied with homogeneous antibodies. J Immunol. 1978 Oct;121(4):1329–1333. [PubMed] [Google Scholar]
  13. Ezekowitz R. A., Austyn J., Stahl P. D., Gordon S. Surface properties of bacillus Calmette-Guérin-activated mouse macrophages. Reduced expression of mannose-specific endocytosis, Fc receptors, and antigen F4/80 accompanies induction of Ia. J Exp Med. 1981 Jul 1;154(1):60–76. doi: 10.1084/jem.154.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ezekowitz R. A., Bampton M., Gordon S. Macrophage activation selectively enhances expression of Fc receptors for IgG2a. J Exp Med. 1983 Feb 1;157(2):807–812. doi: 10.1084/jem.157.2.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Flotte T. J., Springer T. A., Thorbecke G. J. Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets. Am J Pathol. 1983 Apr;111(1):112–124. [PMC free article] [PubMed] [Google Scholar]
  16. Hirsch S., Gordon S. Polymorphic expression of a neutrophil differentiation antigen revealed by monoclonal antibody 7/4. Immunogenetics. 1983;18(3):229–239. doi: 10.1007/BF00952962. [DOI] [PubMed] [Google Scholar]
  17. Hume D. A., Gordon S. Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Identification of resident macrophages in renal medullary and cortical interstitium and the juxtaglomerular complex. J Exp Med. 1983 May 1;157(5):1704–1709. doi: 10.1084/jem.157.5.1704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hume D. A., Robinson A. P., MacPherson G. G., Gordon S. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J Exp Med. 1983 Nov 1;158(5):1522–1536. doi: 10.1084/jem.158.5.1522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Humphrey J. H., Grennan D. Different macrophage populations distinguished by means of fluorescent polysaccharides. Recognition and properties of marginal-zone macrophages. Eur J Immunol. 1981 Mar;11(3):221–228. doi: 10.1002/eji.1830110311. [DOI] [PubMed] [Google Scholar]
  20. KAPLOW L. S. SIMPLIFIED MYELOPEROXIDASE STAIN USING BENZIDINE DIHYDROCHLORIDE. Blood. 1965 Aug;26:215–219. [PubMed] [Google Scholar]
  21. Kampschmidt R. F. The numerous postulated biological manifestations of interleukin-1. J Leukoc Biol. 1984 Sep;36(3):341–355. doi: 10.1002/jlb.36.3.341. [DOI] [PubMed] [Google Scholar]
  22. Knospe W. H., Husseini S., Trobaugh F. E., Jr Hematopoiesis on cellulose ester membranes (CEM). II. Enrichment of the hematopoietic microenvironment by the addition of selected cellular elements. Exp Hematol. 1978 Aug;6(7):601–612. [PubMed] [Google Scholar]
  23. Kyewski B. A., Rouse R. V., Kaplan H. S. Thymocyte rosettes: multicellular complexes of lymphocytes and bone marrow-derived stromal cells in the mouse thymus. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5646–5650. doi: 10.1073/pnas.79.18.5646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lord B. I., Testa N. G., Hendry J. H. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood. 1975 Jul;46(1):65–72. [PubMed] [Google Scholar]
  25. Metcalf D. Effect of thymidine suiciding on colony formation in vitro by mouse hematopoietic cells. Proc Soc Exp Biol Med. 1972 Feb;139(2):511–514. doi: 10.3181/00379727-139-36175. [DOI] [PubMed] [Google Scholar]
  26. Metcalf D., MacDonald H. R. Heterogeneity of in vitro colony- and cluster-forming cells in the mouse marrow: segregation by velocity sedimentation. J Cell Physiol. 1975 Jun;85(3):643–654. doi: 10.1002/jcp.1040850317. [DOI] [PubMed] [Google Scholar]
  27. Moore R. N., Larsen H. S., Horohov D. W., Rouse B. T. Endogenous regulation of macrophage proliferative expansion by colony-stimulating factor-induced interferon. Science. 1984 Jan 13;223(4632):178–181. doi: 10.1126/science.6606850. [DOI] [PubMed] [Google Scholar]
  28. Nathan C. F., Murray H. W., Wiebe M. E., Rubin B. Y. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983 Sep 1;158(3):670–689. doi: 10.1084/jem.158.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pelus L. M., Broxmeyer H. E., Kurland J. I., Moore M. A. Regulation of macrophage and granulocyte proliferation. Specificities of prostaglandin E and lactoferrin. J Exp Med. 1979 Aug 1;150(2):277–292. doi: 10.1084/jem.150.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pober J. S., Gimbrone M. A., Jr, Cotran R. S., Reiss C. S., Burakoff S. J., Fiers W., Ault K. A. Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J Exp Med. 1983 Apr 1;157(4):1339–1353. doi: 10.1084/jem.157.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rich I. N., Heit W., Kubanek B. Extrarenal erythropoietin production by macrophages. Blood. 1982 Oct;60(4):1007–1018. [PubMed] [Google Scholar]
  32. Sorrell J. M., Weiss L. Cell interactions between hematopoietic and stromal cells in the embryonic chick bone marrow. Anat Rec. 1980 May;197(1):1–19. doi: 10.1002/ar.1091970102. [DOI] [PubMed] [Google Scholar]
  33. Springer T., Galfré G., Secher D. S., Milstein C. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol. 1979 Apr;9(4):301–306. doi: 10.1002/eji.1830090410. [DOI] [PubMed] [Google Scholar]
  34. Stahl P., Schlesinger P. H., Sigardson E., Rodman J. S., Lee Y. C. Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: characterization and evidence for receptor recycling. Cell. 1980 Jan;19(1):207–215. doi: 10.1016/0092-8674(80)90402-x. [DOI] [PubMed] [Google Scholar]
  35. Steinman R. M., Nussenzweig M. C. Dendritic cells: features and functions. Immunol Rev. 1980;53:127–147. doi: 10.1111/j.1600-065x.1980.tb01042.x. [DOI] [PubMed] [Google Scholar]
  36. Tushinski R. J., Oliver I. T., Guilbert L. J., Tynan P. W., Warner J. R., Stanley E. R. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell. 1982 Jan;28(1):71–81. doi: 10.1016/0092-8674(82)90376-2. [DOI] [PubMed] [Google Scholar]
  37. Unkeless J. C. Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med. 1979 Sep 19;150(3):580–596. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weiss L. The hematopoietic microenvironment of the bone marrow: an ultrastructural study of the stroma in rats. Anat Rec. 1976 Oct;186(2):161–184. doi: 10.1002/ar.1091860204. [DOI] [PubMed] [Google Scholar]
  39. Westen H., Bainton D. F. Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J Exp Med. 1979 Oct 1;150(4):919–937. doi: 10.1084/jem.150.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wolf N. S. Dissecting the hematopoietic microenvironment. III. Evidence for a positive short range stimulus for cellular proliferation. Cell Tissue Kinet. 1978 Jul;11(4):335–345. [PubMed] [Google Scholar]
  41. van Furth R., Hirsch J. G., Fedorko M. E. Morphology and peroxidase cytochemistry of mouse promonocytes, monocytes, and macrophages. J Exp Med. 1970 Oct 1;132(4):794–812. doi: 10.1084/jem.132.4.794. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES