Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Sep 1;162(3):1025–1043. doi: 10.1084/jem.162.3.1025

Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell- deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells

PMCID: PMC2187813  PMID: 3897446

Abstract

Both connective tissue mast cells and mast cells grown in vitro are derived from multipotential hematopoietic stem cells, but these two mast cell populations exhibit many differences in morphology, biochemistry, and function. We investigated whether the phenotype of cultured mast cells or their progeny was altered when the cells were transferred into different locations in vivo. Cultured mast cells were immature by ultrastructure, and stained with alcian blue but with neither safranin or berberine sulfate, a fluorescent dye that binds to the heparin of connective tissue mast cell granules. By contrast, mast cells recovered from the peritoneal cavity of congenitally mast cell- deficient (WB X C57BL/6)F1-W/Wv (WBB6F1-W/Wv) mice 10 wk after intraperitoneal injection of cultured WBB6F1-+/+ or C57BL/6-bgJ/bgJ mast cells stained with both safranin and berberine sulfate. Staining with berberine sulfate was prevented by treatment of the cells with heparinase but not chondroitinase ABC, suggesting that the adoptively transferred mast cell population had acquired the ability to synthesize and store heparin. Furthermore, the recovered mast cells were indistinguishable by ultrastructure from the normal mature peritoneal mast cells of WBB6F1-+/+ mice, and contained substantially more histamine than mast cells studied directly from culture. Intravenous injection of cultured mast cells resulted in the development of safranin-and berberine sulfate-positive mast cells in the peritoneal cavity, spleen, skin, and glandular stomach muscularis propria. Mast cells also developed on the glandular stomach mucosa, but these cells stained with alcian blue rather than safranin, and did not stain with berberine sulfate. This result suggests that cultured mast cells can give rise to mast cells of either the connective tissue type or mucosal phenotype, depending on anatomical location. Furthermore, transplantation of cultured mast cells into WBB6F1-W/Wv mice had no measurable effect on the anemia of the recipient mice, suggesting a possible strategy for repairing the mast cell deficiency of WBB6F1-W/Wv mice without affecting other bone marrow-derived populations such as erythrocytes. Intravenous injection of representative connective tissue type mast cells (30-50% pure peritoneal mast cells derived from WBB6F1- +/+ mice) gave results similar to those obtained with cultured mast cells: mast cells developing in the peritoneal cavity, skin, spleen, and glandular stomach muscularis propria of WBB6F1-W/Wv recipients stained with safranin and berberine sulfate, whereas mast cells developing in the mucosa of the glandular stomach stained only with alcian blue.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bland C. E., Ginsburg H., Silbert J. E., Metcalfe D. D. Mouse heparin proteoglycan. Synthesis by mast cell-fibroblast monolayers during lymphocyte-dependent mast cell proliferation. J Biol Chem. 1982 Aug 10;257(15):8661–8666. [PubMed] [Google Scholar]
  2. Breivik H. Haematopoietic stem cell content of murine bone marrow, spleen, and blood. Limiting dilution analysis of diffusion chamber cultures. J Cell Physiol. 1971 Aug;78(1):73–78. doi: 10.1002/jcp.1040780111. [DOI] [PubMed] [Google Scholar]
  3. Chi E. Y., Lagunoff D. Abnormal mast cell granules in the beige (Chédiak-Higashi syndrome) mouse. J Histochem Cytochem. 1975 Feb;23(2):117–122. doi: 10.1177/23.2.46876. [DOI] [PubMed] [Google Scholar]
  4. Crapper R. M., Thomas W. R., Schrader J. W. In vivo transfer of persisting (P) cells; further evidence for their identity with T-dependent mast cells. J Immunol. 1984 Oct;133(4):2174–2179. [PubMed] [Google Scholar]
  5. Crowle P. K., Reed N. D. Bone marrow origin of mucosal mast cells. Int Arch Allergy Appl Immunol. 1984;73(3):242–247. doi: 10.1159/000233476. [DOI] [PubMed] [Google Scholar]
  6. Dimlich R. V., Meineke H. A., Reilly F. D., McCuskey R. S. The fluorescent staining of heparin in mast cells using berberine sulfate: compatibility with paraformaldehyde or o-phthalaldehyde induced fluorescence and metachromasia. Stain Technol. 1980 Jul;55(4):217–223. doi: 10.3109/10520298009067243. [DOI] [PubMed] [Google Scholar]
  7. Dvorak A. M., Nabel G., Pyne K., Cantor H., Dvorak H. F., Galli S. J. Ultrastructural identification of the mouse basophil. Blood. 1982 Jun;59(6):1279–1285. [PubMed] [Google Scholar]
  8. Fung M. C., Hapel A. J., Ymer S., Cohen D. R., Johnson R. M., Campbell H. D., Young I. G. Molecular cloning of cDNA for murine interleukin-3. Nature. 1984 Jan 19;307(5948):233–237. doi: 10.1038/307233a0. [DOI] [PubMed] [Google Scholar]
  9. Galli S. J., Dvorak A. M., Dvorak H. F. Basophils and mast cells: morphologic insights into their biology, secretory patterns, and function. Prog Allergy. 1984;34:1–141. [PubMed] [Google Scholar]
  10. Galli S. J., Dvorak A. M., Marcum J. A., Ishizaka T., Nabel G., Der Simonian H., Pyne K., Goldin J. M., Rosenberg R. D., Cantor H. Mast cell clones: a model for the analysis of cellular maturation. J Cell Biol. 1982 Nov;95(2 Pt 1):435–444. doi: 10.1083/jcb.95.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galli S. J., Dvorak A. M., Marcum J. A., Nabel G., Goldin J. M., Rosenberg R. D., Cantor H., Dvorak H. F. Mouse mast cell clones: modulation of functional maturity in vitro. Monogr Allergy. 1983;18:166–170. [PubMed] [Google Scholar]
  12. Guy-Grand D., Dy M., Luffau G., Vassalli P. Gut mucosal mast cells. Origin, traffic, and differentiation. J Exp Med. 1984 Jul 1;160(1):12–28. doi: 10.1084/jem.160.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haig D. M., McKee T. A., Jarrett E. E., Woodbury R., Miller H. R. Generation of mucosal mast cells is stimulated in vitro by factors derived from T cells of helminth-infected rats. Nature. 1982 Nov 11;300(5888):188–190. doi: 10.1038/300188a0. [DOI] [PubMed] [Google Scholar]
  14. Hasthorpe S. A hemopoietic cell line dependent upon a factor in pokeweed mitogen-stimulated spleen cell conditioning medium. J Cell Physiol. 1980 Nov;105(2):379–384. doi: 10.1002/jcp.1041050221. [DOI] [PubMed] [Google Scholar]
  15. Ihle J. N., Keller J., Oroszlan S., Henderson L. E., Copeland T. D., Fitch F., Prystowsky M. B., Goldwasser E., Schrader J. W., Palaszynski E. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol. 1983 Jul;131(1):282–287. [PubMed] [Google Scholar]
  16. Jarrett E. E., Miller H. R. Production and activities of IgE in helminth infection. Prog Allergy. 1982;31:178–233. [PubMed] [Google Scholar]
  17. Katz H. R., LeBlanc P. A., Russell S. W. Two classes of mouse mast cells delineated by monoclonal antibodies. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5916–5918. doi: 10.1073/pnas.80.19.5916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kitamura Y., Go S., Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood. 1978 Aug;52(2):447–452. [PubMed] [Google Scholar]
  19. Kitamura Y., Kawata T., Suda O., Ezumi K. Changed differentiation pattern of parental colony-- forming cells in F1 hybrid mice suffering from graft-versus-host disease. Transplantation. 1970 Dec;10(6):455–462. doi: 10.1097/00007890-197012000-00001. [DOI] [PubMed] [Google Scholar]
  20. Kitamura Y., Shimada M., Go S., Matsuda H., Hatanaka K., Seki M. Distribution of mast-cell precursors in hematopoeitic and lymphopoietic tissues of mice. J Exp Med. 1979 Sep 19;150(3):482–490. doi: 10.1084/jem.150.3.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kitamura Y., Shimada M., Hatanaka K., Miyano Y. Development of mast cells from grafted bone marrow cells in irradiated mice. Nature. 1977 Aug 4;268(5619):442–443. doi: 10.1038/268442a0. [DOI] [PubMed] [Google Scholar]
  22. Kitamura Y., Yokoyama M., Matsuda H., Ohno T., Mori K. J. Spleen colony-forming cell as common precursor for tissue mast cells and granulocytes. Nature. 1981 May 14;291(5811):159–160. doi: 10.1038/291159a0. [DOI] [PubMed] [Google Scholar]
  23. Kitamura Y., Yokoyama M., Matsuda H., Shimada M. Coincidental development of forestomach papilloma and prepyloric ulcer in nontreated mutant mice of W/Wv and SI/SId genotypes. Cancer Res. 1980 Sep;40(9):3392–3397. [PubMed] [Google Scholar]
  24. Mayrhofer G. Fixation and staining of granules in mucosal mast cells and intraepithelial lymphocytes in the rat jejunum, with special reference to the relationship between the acid glycosaminoglycans in the two cell types. Histochem J. 1980 Sep;12(5):513–526. doi: 10.1007/BF01011925. [DOI] [PubMed] [Google Scholar]
  25. Mayrhofer G. Thymus-dependent and thymus-independent subpopulations of intestinal intraepithelial lymphocytes: a granular subpopulation of probable bone marrow origin and relationship to mucosal mast cells. Blood. 1980 Mar;55(3):532–535. [PubMed] [Google Scholar]
  26. Nabel G., Galli S. J., Dvorak A. M., Dvorak H. F., Cantor H. Inducer T lymphocytes synthesize a factor that stimulates proliferation of cloned mast cells. Nature. 1981 May 28;291(5813):332–334. doi: 10.1038/291332a0. [DOI] [PubMed] [Google Scholar]
  27. Nagao K., Yokoro K., Aaronson S. A. Continuous lines of basophil/mast cells derived from normal mouse bone marrow. Science. 1981 Apr 17;212(4492):333–335. doi: 10.1126/science.7209531. [DOI] [PubMed] [Google Scholar]
  28. Nakahata T., Spicer S. S., Cantey J. R., Ogawa M. Clonal assay of mouse mast cell colonies in methylcellulose culture. Blood. 1982 Aug;60(2):352–361. [PubMed] [Google Scholar]
  29. PORTER E. H., BERRY R. J. THE EFFICIENT DESIGN OF TRANSPLANTABLE TUMOUR ASSAYS. Br J Cancer. 1963 Dec;17:583–595. doi: 10.1038/bjc.1963.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Razin E., Cordon-Cardo C., Good R. A. Growth of a pure population of mouse mast cells in vitro with conditioned medium derived from concanavalin A-stimulated splenocytes. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2559–2561. doi: 10.1073/pnas.78.4.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Razin E., Ihle J. N., Seldin D., Mencia-Huerta J. M., Katz H. R., LeBlanc P. A., Hein A., Caulfield J. P., Austen K. F., Stevens R. L. Interleukin 3: A differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J Immunol. 1984 Mar;132(3):1479–1486. [PubMed] [Google Scholar]
  32. Razin E., Stevens R. L., Akiyama F., Schmid K., Austen K. F. Culture from mouse bone marrow of a subclass of mast cells possessing a distinct chondroitin sulfate proteoglycan with glycosaminoglycans rich in N-acetylgalactosamine-4,6-disulfate. J Biol Chem. 1982 Jun 25;257(12):7229–7236. [PubMed] [Google Scholar]
  33. Rennick D. M., Lee F. D., Yokota T., Arai K. I., Cantor H., Nabel G. J. A cloned MCGF cDNA encodes a multilineage hematopoietic growth factor: multiple activities of interleukin 3. J Immunol. 1985 Feb;134(2):910–914. [PubMed] [Google Scholar]
  34. Ruitenberg E. J., Elgersma A. Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature. 1976 Nov 18;264(5583):258–260. doi: 10.1038/264258a0. [DOI] [PubMed] [Google Scholar]
  35. Schrader J. W. Bone marrow differentiation in vitro. Crit Rev Immunol. 1983;4(3):197–277. [PubMed] [Google Scholar]
  36. Schrader J. W. In in vitro production and cloning of the P cell, a bone marrow-derived null cell that expresses H-2 and Ia-antigens, has mast cell-like granules, and is regulated by a factor released by activated T cells. J Immunol. 1981 Feb;126(2):452–458. [PubMed] [Google Scholar]
  37. Schrader J. W., Lewis S. J., Clark-Lewis I., Culvenor J. G. The persisting (P) cell: histamine content, regulation by a T cell-derived factor, origin from a bone marrow precursor, and relationship to mast cells. Proc Natl Acad Sci U S A. 1981 Jan;78(1):323–327. doi: 10.1073/pnas.78.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sonoda T., Kanayama Y., Hara H., Hayashi C., Tadokoro M., Yonezawa T., Kitamura Y. Proliferation of peritoneal mast cells in the skin of W/Wv mice that genetically lack mast cells. J Exp Med. 1984 Jul 1;160(1):138–151. doi: 10.1084/jem.160.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sonoda T., Ohno T., Kitamura Y. Concentration of mast-cell progenitors in bone marrow, spleen, and blood of mice determined by limiting dilution analysis. J Cell Physiol. 1982 Jul;112(1):136–140. doi: 10.1002/jcp.1041120120. [DOI] [PubMed] [Google Scholar]
  40. Sredni B., Friedman M. M., Bland C. E., Metcalfe D. D. Ultrastructural, biochemical, and functional characteristics of histamine-containing cells cloned from mouse bone marrow: tentative identification as mucosal mast cells. J Immunol. 1983 Aug;131(2):915–922. [PubMed] [Google Scholar]
  41. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  42. Tas J., Berndsen R. G. Does heparin occur in mucosal mast cells of the rat small intestine? J Histochem Cytochem. 1977 Sep;25(9):1058–1062. doi: 10.1177/25.9.71326. [DOI] [PubMed] [Google Scholar]
  43. Tertian G., Yung Y. P., Guy-Grand D., Moore M. A. Long-term in vitro culture of murine mast cells. I. Description of a growth factor-dependent culture technique. J Immunol. 1981 Aug;127(2):788–794. [PubMed] [Google Scholar]
  44. Tsuyama K., Sonoda T., Kitamura Y., Inoue R., Ochi T., Ono K. Survival of host mast cells after establishment of hematopoietic chimerism by graft-versus-host reaction in nonirradiated F1 hybrid mice. Transplantation. 1982 Oct;34(4):172–175. doi: 10.1097/00007890-198210000-00003. [DOI] [PubMed] [Google Scholar]
  45. Wong G. H., Clark-Lewis I., McKimm-Breschkin J. L., Schrader J. W. Interferon-gamma-like molecule induces Ia antigens on cultured mast cell progenitors. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6989–6993. doi: 10.1073/pnas.79.22.6989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yamada K. The effect of digestion with chondroitinases upon certain histochemical reactions of mucosaccharide-containing tissues. J Histochem Cytochem. 1974 Apr;22(4):266–275. doi: 10.1177/22.4.266. [DOI] [PubMed] [Google Scholar]
  47. Yokota T., Lee F., Rennick D., Hall C., Arai N., Mosmann T., Nabel G., Cantor H., Arai K. Isolation and characterization of a mouse cDNA clone that expresses mast-cell growth-factor activity in monkey cells. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1070–1074. doi: 10.1073/pnas.81.4.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yung Y. P., Eger R., Tertian G., Moore M. A. Long-term in vitro culture of murine mast cells. II. Purification of a mast cell growth factor and its dissociation from TCGF. J Immunol. 1981 Aug;127(2):794–799. [PubMed] [Google Scholar]
  49. Yung Y. P., Moore M. A. Long-term in vitro culture of murine mast cells. III. Discrimination of mast cells growth factor and granulocyte-CSF. J Immunol. 1982 Sep;129(3):1256–1261. [PubMed] [Google Scholar]
  50. Yung Y. P., Moore M. A. Mast cell growth factor. Lymphokine Res. 1983;2(4):127–131. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES