Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Apr 1;171(4):1123–1140. doi: 10.1084/jem.171.4.1123

Biased accumulation of T lymphocytes with "memory"-type CD45 leukocyte common antigen gene expression on the epithelial surface of the human lung

PMCID: PMC2187829  PMID: 2139099

Abstract

Expression of alternatively spliced products of the CD45 leukocyte common antigen gene identifies two populations of blood T cells: "naive" T cells (containing CD45R-IV mRNA transcripts, CD45 220, 205 kD surface proteins detected with antibody 2H4) that respond poorly to recall antigens, and "memory" T cells (containing CD45R-0 mRNA transcripts, expressing CD45 180 kD protein, detected with antibody UCHL1) that respond promptly to recall antigens. While blood contains approximately equal numbers of "naive" and "memory" T cells, it is known that UCHL1+ "memory" T cells accumulate at sites of chronic inflammation. To test the concept that "memory" T cells are a feature of the T lymphocyte populations present in tissues chronically exposed to antigens in normals as well as in individuals with chronic inflammation, we evaluated T lymphocytes obtained from blood and the epithelial surface of the lower respiratory tract of normal individuals for the expression of specific CD45 surface protein isoforms and corresponding mRNA transcripts. Flow cytometric analysis of CD45 220, 205, and 180 kD surface proteins demonstrated that lung T cells of normals are dominated by UCHL1+ "memory" cells (86 +/- 2%) while autologous blood T cells have equal proportions of "memory" UCHL1+ and "naive" 2H4+ T cells. In addition, polymerase chain reaction analysis of CD45 mRNA transcripts revealed that the lung cells expressed CD45R-0 mRNA transcripts but 17-fold fewer CD45R-IV mRNA transcripts than autologous blood T cells (p less than 0.01). The pattern of lung T cells being dominated by CD45R-0 mRNA+, UCHL1+ "memory" T cells was also observed in individuals with chronic beryllium disease, an example of a chronic inflammatory disease in which antigen-specific T cells accumulate on the pulmonary epithelial surface. Like the normals, the lung T cells of the beryllium disease patients were dominated by CD45R- 0 mRNA transcript+, UCHL1+, T cells. However, on a quantitative basis, the beryllium patients contained far greater numbers of T cells, i.e., the T cell populations on the surface of the normal and inflamed lung are similar in character ("memory" T cells) but differ in numbers (there are far more in the chronic inflammatory state). Thus, T cell populations on the epithelial surface of the normal lung likely reflect the chronic exposure to a diverse set of antigens, with a pattern that is qualitatively similar to that observed among T cells accumulating in response to a single antigen.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  2. Barclay A. N., Jackson D. I., Willis A. C., Williams A. F. Lymphocyte specific heterogeneity in the rat leucocyte common antigen (T200) is due to differences in polypeptide sequences near the NH2-terminus. EMBO J. 1987 May;6(5):1259–1264. doi: 10.1002/j.1460-2075.1987.tb02362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beverley P. C. Human T cell subsets. Immunol Lett. 1987 Apr;14(4):263–267. doi: 10.1016/0165-2478(87)90001-0. [DOI] [PubMed] [Google Scholar]
  4. Blackman M. A., Kappler J. W., Marrack P. T-cell specificity and repertoire. Immunol Rev. 1988 Jan;101:5–19. doi: 10.1111/j.1600-065x.1988.tb00730.x. [DOI] [PubMed] [Google Scholar]
  5. Budd R. C., Cerottini J. C., Horvath C., Bron C., Pedrazzini T., Howe R. C., MacDonald H. R. Distinction of virgin and memory T lymphocytes. Stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J Immunol. 1987 May 15;138(10):3120–3129. [PubMed] [Google Scholar]
  6. Byrne J. A., Butler J. L., Cooper M. D. Differential activation requirements for virgin and memory T cells. J Immunol. 1988 Nov 15;141(10):3249–3257. [PubMed] [Google Scholar]
  7. Cooper C. L., Mueller C., Sinchaisri T. A., Pirmez C., Chan J., Kaplan G., Young S. M., Weissman I. L., Bloom B. R., Rea T. H. Analysis of naturally occurring delayed-type hypersensitivity reactions in leprosy by in situ hybridization. J Exp Med. 1989 May 1;169(5):1565–1581. doi: 10.1084/jem.169.5.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davidson B. L., Faust J., Pessano S., Daniele R. P., Rovera G. Differentiation and activation phenotypes of lung T lymphocytes differ from those of circulating T lymphocytes. J Clin Invest. 1985 Jul;76(1):60–65. doi: 10.1172/JCI111977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davis M. M., Bjorkman P. J. T-cell antigen receptor genes and T-cell recognition. Nature. 1988 Aug 4;334(6181):395–402. doi: 10.1038/334395a0. [DOI] [PubMed] [Google Scholar]
  10. Ferre F., Garduno F. Preparation of crude cell extract suitable for amplification of RNA by the polymerase chain reaction. Nucleic Acids Res. 1989 Mar 11;17(5):2141–2141. doi: 10.1093/nar/17.5.2141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hall L. R., Streuli M., Schlossman S. F., Saito H. Complete exon-intron organization of the human leukocyte common antigen (CD45) gene. J Immunol. 1988 Oct 15;141(8):2781–2787. [PubMed] [Google Scholar]
  12. Hampson F., Monick M., Peterson M. W., Hunninghake G. W. Immune mediators increase adherence of T-lymphocytes to human lung fibroblasts. Am J Physiol. 1989 Feb;256(2 Pt 1):C336–C340. doi: 10.1152/ajpcell.1989.256.2.C336. [DOI] [PubMed] [Google Scholar]
  13. Harbarth P., Vosberg H. P. Enzymatic amplification of myosin heavy-chain mRNA sequences in vitro. DNA. 1988 May;7(4):297–306. doi: 10.1089/dna.1988.7.297. [DOI] [PubMed] [Google Scholar]
  14. Harmsen A. G., Muggenburg B. A., Snipes M. B., Bice D. E. The role of macrophages in particle translocation from lungs to lymph nodes. Science. 1985 Dec 13;230(4731):1277–1280. doi: 10.1126/science.4071052. [DOI] [PubMed] [Google Scholar]
  15. Janossy G., Bofill M., Rowe D., Muir J., Beverley P. C. The tissue distribution of T lymphocytes expressing different CD45 polypeptides. Immunology. 1989 Apr;66(4):517–525. [PMC free article] [PubMed] [Google Scholar]
  16. Jurgensen P. F., Olsen G. N., Johnson J. E., 3rd, Swenson E. W., Ayoub E. M., Henney C. S., Waldman R. H. Immune response of the human respiratory tract. II. Cell-mediated immunity in the lower respiratory tract to tuberculin and mumps and influenza viruses. J Infect Dis. 1973 Dec;128(6):730–735. doi: 10.1093/infdis/128.6.730. [DOI] [PubMed] [Google Scholar]
  17. Kingsley G., Pitzalis C., Kyriazis N., Panayi G. S. Abnormal helper-inducer/suppressor-inducer T-cell subset distribution and T-cell activation status are common to all types of chronic synovitis. Scand J Immunol. 1988 Aug;28(2):225–232. doi: 10.1111/j.1365-3083.1988.tb02435.x. [DOI] [PubMed] [Google Scholar]
  18. Kriebel D., Brain J. D., Sprince N. L., Kazemi H. The pulmonary toxicity of beryllium. Am Rev Respir Dis. 1988 Feb;137(2):464–473. doi: 10.1164/ajrccm/137.2.464. [DOI] [PubMed] [Google Scholar]
  19. Lasky H. P., Bauer K., Pope R. M. Increased helper inducer and decreased suppressor inducer phenotypes in the rheumatoid joint. Arthritis Rheum. 1988 Jan;31(1):52–59. doi: 10.1002/art.1780310108. [DOI] [PubMed] [Google Scholar]
  20. Lefrancois L., Thomas M. L., Bevan M. J., Trowbridge I. S. Different classes of T lymphocytes have different mRNAs for the leukocyte-common antigen, T200. J Exp Med. 1986 May 1;163(5):1337–1342. doi: 10.1084/jem.163.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Letvin N. L., Morimoto C., Aldrich W. R., Schlossman S. F. Definition of the T-lymphocyte inducer of suppression in primates using a monoclonal antibody. Cell Immunol. 1985 Sep;94(2):360–368. doi: 10.1016/0008-8749(85)90260-6. [DOI] [PubMed] [Google Scholar]
  22. Martinet Y., Yamauchi K., Crystal R. G. Differential expression of the tumor necrosis factor/cachectin gene by blood and lung mononuclear phagocytes. Am Rev Respir Dis. 1988 Sep;138(3):659–665. doi: 10.1164/ajrccm/138.3.659. [DOI] [PubMed] [Google Scholar]
  23. Merkenschlager M., Terry L., Edwards R., Beverley P. C. Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur J Immunol. 1988 Nov;18(11):1653–1661. doi: 10.1002/eji.1830181102. [DOI] [PubMed] [Google Scholar]
  24. Morimoto C., Letvin N. L., Distaso J. A., Aldrich W. R., Schlossman S. F. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol. 1985 Mar;134(3):1508–1515. [PubMed] [Google Scholar]
  25. Morimoto C., Romain P. L., Fox D. A., Anderson P., DiMaggio M., Levine H., Schlossman S. F. Abnormalities in CD4+ T-lymphocyte subsets in inflammatory rheumatic diseases. Am J Med. 1988 May;84(5):817–825. doi: 10.1016/0002-9343(88)90058-7. [DOI] [PubMed] [Google Scholar]
  26. Mornex J. F., Chytil-Weir A., Martinet Y., Courtney M., LeCocq J. P., Crystal R. G. Expression of the alpha-1-antitrypsin gene in mononuclear phagocytes of normal and alpha-1-antitrypsin-deficient individuals. J Clin Invest. 1986 Jun;77(6):1952–1961. doi: 10.1172/JCI112524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Müller-Quernheim J., Saltini C., Sondermeyer P., Crystal R. G. Compartmentalized activation of the interleukin 2 gene by lung T lymphocytes in active pulmonary sarcoidosis. J Immunol. 1986 Dec 1;137(11):3475–3483. [PubMed] [Google Scholar]
  28. Nolan G. P., Fiering S., Nicolas J. F., Herzenberg L. A. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2603–2607. doi: 10.1073/pnas.85.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Orme I. M., Collins F. M. Aerogenic vaccination of mice with Mycobacterium bovis BCG. Tubercle. 1986 Jun;67(2):133–140. doi: 10.1016/0041-3879(86)90007-3. [DOI] [PubMed] [Google Scholar]
  30. Pearse M. J., Wu L. Preparation of both DNA and RNA for hybridization analysis from limiting quantities of lymphoid cells. Immunol Lett. 1988 Jul;18(3):219–223. doi: 10.1016/0165-2478(88)90022-3. [DOI] [PubMed] [Google Scholar]
  31. Pinkston P., Bitterman P. B., Crystal R. G. Spontaneous release of interleukin-2 by lung T lymphocytes in active pulmonary sarcoidosis. N Engl J Med. 1983 Apr 7;308(14):793–800. doi: 10.1056/NEJM198304073081401. [DOI] [PubMed] [Google Scholar]
  32. Pitzalis C., Kingsley G., Haskard D., Panayi G. The preferential accumulation of helper-inducer T lymphocytes in inflammatory lesions: evidence for regulation by selective endothelial and homotypic adhesion. Eur J Immunol. 1988 Sep;18(9):1397–1404. doi: 10.1002/eji.1830180915. [DOI] [PubMed] [Google Scholar]
  33. Pulido R., Cebrián M., Acevedo A., de Landázuri M. O., Sánchez-Madrid F. Comparative biochemical and tissue distribution study of four distinct CD45 antigen specificities. J Immunol. 1988 Jun 1;140(11):3851–3857. [PubMed] [Google Scholar]
  34. Ralph S. J., Thomas M. L., Morton C. C., Trowbridge I. S. Structural variants of human T200 glycoprotein (leukocyte-common antigen). EMBO J. 1987 May;6(5):1251–1257. doi: 10.1002/j.1460-2075.1987.tb02361.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Reed K. C., Mann D. A. Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 1985 Oct 25;13(20):7207–7221. doi: 10.1093/nar/13.20.7207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rennard S. I., Basset G., Lecossier D., O'Donnell K. M., Pinkston P., Martin P. G., Crystal R. G. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1985) 1986 Feb;60(2):532–538. doi: 10.1152/jappl.1986.60.2.532. [DOI] [PubMed] [Google Scholar]
  37. Rossman M. D., Kern J. A., Elias J. A., Cullen M. R., Epstein P. E., Preuss O. P., Markham T. N., Daniele R. P. Proliferative response of bronchoalveolar lymphocytes to beryllium. A test for chronic beryllium disease. Ann Intern Med. 1988 May;108(5):687–693. doi: 10.7326/0003-4819-108-5-687. [DOI] [PubMed] [Google Scholar]
  38. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  39. Saltini C., Hance A. J., Ferrans V. J., Basset F., Bitterman P. B., Crystal R. G. Accurate quantification of cells recovered by bronchoalveolar lavage. Am Rev Respir Dis. 1984 Oct;130(4):650–658. doi: 10.1164/arrd.1984.130.4.650. [DOI] [PubMed] [Google Scholar]
  40. Saltini C., Hemler M. E., Crystal R. G. T lymphocytes compartmentalized on the epithelial surface of the lower respiratory tract express the very late activation antigen complex VLA-1. Clin Immunol Immunopathol. 1988 Feb;46(2):221–233. doi: 10.1016/0090-1229(88)90185-7. [DOI] [PubMed] [Google Scholar]
  41. Saltini C., Spurzem J. R., Kirby M. R., Crystal R. G. Sarcoidosis is not associated with a generalized defect in T cell suppressor function. J Immunol. 1988 Mar 15;140(6):1854–1860. [PubMed] [Google Scholar]
  42. Saltini C., Spurzem J. R., Lee J. J., Pinkston P., Crystal R. G. Spontaneous release of interleukin 2 by lung T lymphocytes in active pulmonary sarcoidosis is primarily from the Leu3+DR+ T cell subset. J Clin Invest. 1986 Jun;77(6):1962–1970. doi: 10.1172/JCI112525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Saltini C., Winestock K., Kirby M., Pinkston P., Crystal R. G. Maintenance of alveolitis in patients with chronic beryllium disease by beryllium-specific helper T cells. N Engl J Med. 1989 Apr 27;320(17):1103–1109. doi: 10.1056/NEJM198904273201702. [DOI] [PubMed] [Google Scholar]
  44. Sanders M. E., Makgoba M. W., June C. H., Young H. A., Shaw S. Enhanced responsiveness of human memory T cells to CD2 and CD3 receptor-mediated activation. Eur J Immunol. 1989 May;19(5):803–808. doi: 10.1002/eji.1830190504. [DOI] [PubMed] [Google Scholar]
  45. Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
  46. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  47. Serra H. M., Krowka J. F., Ledbetter J. A., Pilarski L. M. Loss of CD45R (Lp220) represents a post-thymic T cell differentiation event. J Immunol. 1988 Mar 1;140(5):1435–1441. [PubMed] [Google Scholar]
  48. Sminia T., van der Brugge-Gamelkoorn G. J., Jeurissen S. H. Structure and function of bronchus-associated lymphoid tissue (BALT). Crit Rev Immunol. 1989;9(2):119–150. [PubMed] [Google Scholar]
  49. Smith S. H., Brown M. H., Rowe D., Callard R. E., Beverley P. C. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology. 1986 May;58(1):63–70. [PMC free article] [PubMed] [Google Scholar]
  50. Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  51. Stein-Streilein J., Witte P. L., Streilein J. W., Guffee J. Local cellular defenses in influenza-infected lungs. Cell Immunol. 1985 Oct 15;95(2):234–246. doi: 10.1016/0008-8749(85)90311-9. [DOI] [PubMed] [Google Scholar]
  52. Streuli M., Hall L. R., Saga Y., Schlossman S. F., Saito H. Differential usage of three exons generates at least five different mRNAs encoding human leukocyte common antigens. J Exp Med. 1987 Nov 1;166(5):1548–1566. doi: 10.1084/jem.166.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Streuli M., Matsuyama T., Morimoto C., Schlossman S. F., Saito H. Identification of the sequence required for expression of the 2H4 epitope on the human leukocyte common antigens. J Exp Med. 1987 Nov 1;166(5):1567–1572. doi: 10.1084/jem.166.5.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Streuli M., Morimoto C., Schrieber M., Schlossman S. F., Saito H. Characterization of CD45 and CD45R monoclonal antibodies using transfected mouse cell lines that express individual human leukocyte common antigens. J Immunol. 1988 Dec 1;141(11):3910–3914. [PubMed] [Google Scholar]
  55. Streuli M., Saito H. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO J. 1989 Mar;8(3):787–796. doi: 10.1002/j.1460-2075.1989.tb03439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Strominger J. L. The gamma delta T cell receptor and class Ib MHC-related proteins: enigmatic molecules of immune recognition. Cell. 1989 Jun 16;57(6):895–898. doi: 10.1016/0092-8674(89)90326-7. [DOI] [PubMed] [Google Scholar]
  57. Terry L. A., Brown M. H., Beverley P. C. The monoclonal antibody, UCHL1, recognizes a 180,000 MW component of the human leucocyte-common antigen, CD45. Immunology. 1988 Jun;64(2):331–336. [PMC free article] [PubMed] [Google Scholar]
  58. Thomas M. L., Lefrançois L. Differential expression of the leucocyte-common antigen family. Immunol Today. 1988 Oct;9(10):320–326. doi: 10.1016/0167-5699(88)91326-6. [DOI] [PubMed] [Google Scholar]
  59. Tsubota H., Lord C. I., Watkins D. I., Morimoto C., Letvin N. L. A cytotoxic T lymphocyte inhibits acquired immunodeficiency syndrome virus replication in peripheral blood lymphocytes. J Exp Med. 1989 Apr 1;169(4):1421–1434. doi: 10.1084/jem.169.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES