Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Oct 1;162(4):1304–1318. doi: 10.1084/jem.162.4.1304

Helper T cells induced by an immunopurified herpes simplex virus type I (HSV-I) 115 kilodalton glycoprotein (gB) protect mice against HSV-I infection

PMCID: PMC2187857  PMID: 2995536

Abstract

Three herpes simplex virus type I (HSV-I) glycoproteins of apparent molecular masses 103, 63, and 115 kD have been purified using virus- specific monoclonal antibodies (mAb) G8D1, C2D2, and T157, respectively. Both G8D1 and C2D2 neutralize HSV-I in vitro and passively protect CBA mice against HSV-I infection in vivo, whereas T157 is neither neutralizing nor passively protective. However, mice given a single subcutaneous injection of 30 micrograms 115 kD glycoprotein in saline were completely protected against lethal challenges of HSV-I administered intraperitoneally or in the footpad 7 d after immunization. In contrast, mice similarly immunized with 103 or 63 kD glycoproteins were only partially protected. The prophylactic immunity was correlated with an early induction of specific antibody, which became even more evident 3 d after virus challenge. There was a remarkable similarity in antibody isotype distribution between the responses to 115 kD glycoprotein and to heat-inactivated intact HSV-I. However, the prechallenge sera from 115 kD glycoprotein hyperimmunized mice were again neither virus-neutralizing nor passively protective. All three glycoproteins induced only low levels of delayed-type hypersensitivity (DTH). Pretreatment of mice with cyclophosphamide significantly enhanced DTH to 115 kD and 103 kD glycoproteins in the absence of antibody, but failed to confer significant immunity, indicating that DTH alone is insufficient for protection. Splenic and lymph node Ig- (B cell-depleted) cells from mice protectively immunized with 115 kD glycoprotein could adoptively transfer effective protection and enhance a virus neutralizing antibody response in normal recipients challenged with a lethal dose of HSV-I. Both the protection and the ability to enhance neutralizing antibody were diminished when the cells were treated with mAb GK 1.5 and complement. These results therefore demonstrate that the 115 kD glycoprotein, though not apparently containing accessible epitopes for the induction of virus-neutralizing antibody, possesses determinants capable of activating helper T cells. These L3T4+ cells confer strong protective immunity by enhancing protective antibody upon challenge infection, probably through associative help.

Full Text

The Full Text of this article is available as a PDF (1,006.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON W. A., KILBOURNE E. D. A herpes simplex skin test diagnostic antigen of low protein content from cell culture fluid. J Invest Dermatol. 1961 Jul;37:25–28. [PubMed] [Google Scholar]
  2. Ashman R. B., Müllbacher A. A T helper cell for anti-viral cytotoxic T-cell responses. J Exp Med. 1979 Nov 1;150(5):1277–1282. doi: 10.1084/jem.150.5.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balachandran N., Bacchetti S., Rawls W. E. Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun. 1982 Sep;37(3):1132–1137. doi: 10.1128/iai.37.3.1132-1137.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  5. Chan W. L., Mitchison N. A. The use of somatic cell hybrids for the production of monospecific viral antibodies. Lab Res Methods Biol Med. 1982;5:125–141. [PubMed] [Google Scholar]
  6. Chan W. L. Protective immunization of mice with specific HSV-1 glycoproteins. Immunology. 1983 Jun;49(2):343–352. [PMC free article] [PubMed] [Google Scholar]
  7. Cohen G. H., Dietzschold B., Ponce de Leon M., Long D., Golub E., Varrichio A., Pereira L., Eisenberg R. J. Localization and synthesis of an antigenic determinant of herpes simplex virus glycoprotein D that stimulates the production of neutralizing antibody. J Virol. 1984 Jan;49(1):102–108. doi: 10.1128/jvi.49.1.102-108.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen G. H., Ponce de Leon M., Nichols C. Isolation of a herpes simplex virus-specific antigenic fraction which stimulates the production of neutralizing antibody. J Virol. 1972 Nov;10(5):1021–1030. doi: 10.1128/jvi.10.5.1021-1030.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  10. Dix R. D., Pereira L., Baringer J. R. Use of monoclonal antibody directed against herpes simplex virus glycoproteins to protect mice against acute virus-induced neurological disease. Infect Immun. 1981 Oct;34(1):192–199. doi: 10.1128/iai.34.1.192-199.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eberle R., Courtney R. J. Assay of type-specific and type-common antibodies to herpes simplex virus types 1 and 2 in human sera. Infect Immun. 1981 Mar;31(3):1062–1070. doi: 10.1128/iai.31.3.1062-1070.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisenberg R. J., Ponce de Leon M., Cohen G. H. Comparative structural analysis of glycoprotein gD of herpes simplex virus types 1 and 2. J Virol. 1980 Aug;35(2):428–435. doi: 10.1128/jvi.35.2.428-435.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eisenberg R. J., Ponce de Leon M., Pereira L., Long D., Cohen G. H. Purification of glycoprotein gD of herpes simplex virus types 1 and 2 by use of monoclonal antibody. J Virol. 1982 Mar;41(3):1099–1104. doi: 10.1128/jvi.41.3.1099-1104.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holder A. A., Freeman R. R. Immunization against blood-stage rodent malaria using purified parasite antigens. Nature. 1981 Nov 26;294(5839):361–364. doi: 10.1038/294361a0. [DOI] [PubMed] [Google Scholar]
  15. La Thangue N. B., Chan W. L., Almeida J. D. Monoclonal antibodies to herpes simplex virus type 1 glycoproteins show that epitope location influences virus neutralization. J Med Virol. 1984;13(3):227–242. doi: 10.1002/jmv.1890130305. [DOI] [PubMed] [Google Scholar]
  16. Lausch R. N., Swyers J. S., Kaufman H. E. Delayed hypersensitivity to herpes simplex virus in the guinea pig. J Immunol. 1966 Jun;96(6):981–987. [PubMed] [Google Scholar]
  17. Lawman M. J., Rouse B. T., Courtney R. J., Walker R. D. Cell-mediated immunity against herpes simplex induction of cytotoxic T lymphocytes. Infect Immun. 1980 Jan;27(1):133–139. doi: 10.1128/iai.27.1.133-139.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lukic M. L., Mitchison N. A. Self- and allo-specific suppressor T cells evoked by intravenous injection of F protein. Eur J Immunol. 1984 Aug;14(8):766–768. doi: 10.1002/eji.1830140820. [DOI] [PubMed] [Google Scholar]
  19. Merigan T. C., Stevens D. A. Viral infections in man associated with acquired immunological deficiency states. Fed Proc. 1971 Nov-Dec;30(6):1858–1864. [PubMed] [Google Scholar]
  20. Morse L. S., Pereira L., Roizman B., Schaffer P. A. Anatomy of herpes simplex virus (HSV) DNA. X. Mapping of viral genes by analysis of polypeptides and functions specified by HSV-1 X HSV-2 recombinants. J Virol. 1978 May;26(2):389–410. doi: 10.1128/jvi.26.2.389-410.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nash A. A., Field H. J., Quartey-Papafio R. Cell-mediated immunity in herpes simplex virus-infected mice: induction, characterization and antiviral effects of delayed type hypersensitivity. J Gen Virol. 1980 Jun;48(Pt 2):351–357. doi: 10.1099/0022-1317-48-2-351. [DOI] [PubMed] [Google Scholar]
  22. Norrild B. Immunochemistry of herpes simplex virus glycoproteins. Curr Top Microbiol Immunol. 1980;90:67–106. doi: 10.1007/978-3-642-67717-5_4. [DOI] [PubMed] [Google Scholar]
  23. Norrild B., Shore S. L., Nahmias A. J. Herpes simplex virus glycoproteins: participation of individual herpes simplex virus type 1 glycoprotein antigens in immunocytolysis and their correlation with previously identified glycopolypeptides. J Virol. 1979 Dec;32(3):741–748. doi: 10.1128/jvi.32.3.741-748.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Notkins A. L. Immune mechanisms by which the spread of viral infections is stopped. Cell Immunol. 1974 Mar 30;11(1-3):478–483. doi: 10.1016/0008-8749(74)90045-8. [DOI] [PubMed] [Google Scholar]
  25. Oakes J. E., Davis W. B., Taylor J. A., Weppner W. A. Lymphocyte reactivity contributes to protection conferred by specific antibody passively transferred to herpes simplex virus-infected mice. Infect Immun. 1980 Aug;29(2):642–649. doi: 10.1128/iai.29.2.642-649.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oakes J. E. Role for cell-mediated immunity in the resistance of mice to subcutaneous herpes simplex virus infection. Infect Immun. 1975 Jul;12(1):166–172. doi: 10.1128/iai.12.1.166-172.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pereira L., Dondero D. V., Gallo D., Devlin V., Woodie J. D. Serological analysis of herpes simplex virus types 1 and 2 with monoclonal antibodies. Infect Immun. 1982 Jan;35(1):363–367. doi: 10.1128/iai.35.1.363-367.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Powell K. L., Buchan A., Sim C., Watson D. H. Type-specific protein in herpes simplex virus envelope reacts with neutralising antibody. Nature. 1974 May 24;249(455):360–361. doi: 10.1038/249360a0. [DOI] [PubMed] [Google Scholar]
  29. Rector J. T., Lausch R. N., Oakes J. E. Use of monoclonal antibodies for analysis of antibody-dependent immunity to ocular herpes simplex virus type 1 infection. Infect Immun. 1982 Oct;38(1):168–174. doi: 10.1128/iai.38.1.168-174.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Russell S. M., Liew F. Y. Cell cooperation in antibody responses to influenza virus. I. priming of helper t cells by internal components of virion. Eur J Immunol. 1980 Oct;10(10):791–796. doi: 10.1002/eji.1830101013. [DOI] [PubMed] [Google Scholar]
  31. Russell S. M., Liew F. Y. T cells primed by influenza virion internal components can cooperate in the antibody response to haemagglutinin. Nature. 1979 Jul 12;280(5718):147–148. doi: 10.1038/280147a0. [DOI] [PubMed] [Google Scholar]
  32. Schrier R. D., Pizer L. I., Moorhead J. W. Type-specific delayed hypersensitivity and protective immunity induced by isolated herpes simplex virus glycoprotein. J Immunol. 1983 Mar;130(3):1413–1418. [PubMed] [Google Scholar]
  33. Secher D. S., Burke D. C. A monoclonal antibody for large-scale purification of human leukocyte interferon. Nature. 1980 Jun 12;285(5765):446–450. doi: 10.1038/285446a0. [DOI] [PubMed] [Google Scholar]
  34. Sethi K. K., Omata Y., Schneweis K. E. Protection of mice from fatal herpes simplex virus type 1 infection by adoptive transfer of cloned virus-specific and H-2-restricted cytotoxic T lymphocytes. J Gen Virol. 1983 Feb;64(Pt 2):443–447. doi: 10.1099/0022-1317-64-2-443. [DOI] [PubMed] [Google Scholar]
  35. Shand F. L. Analysis of immunosuppression generated by the graft-versus-host reaction. I. A suppressor T-cell component studied in vivo. Immunology. 1975 Dec;29(6):953–965. [PMC free article] [PubMed] [Google Scholar]
  36. Talbot P., Almeida J. D. Human cytomegalovirus: purification of enveloped virions and dense bodies. J Gen Virol. 1977 Aug;36(2):345–349. doi: 10.1099/0022-1317-36-2-345. [DOI] [PubMed] [Google Scholar]
  37. Watson R. J., Weis J. H., Salstrom J. S., Enquist L. W. Herpes simplex virus type-1 glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science. 1982 Oct 22;218(4570):381–384. doi: 10.1126/science.6289440. [DOI] [PubMed] [Google Scholar]
  38. Wilson M. B., Nakane P. K. The covalent coupling of proteins to periodate-oxidized sephadex: a new approach to immunoadsorbent preparation. J Immunol Methods. 1976;12(1-2):171–181. doi: 10.1016/0022-1759(76)90107-1. [DOI] [PubMed] [Google Scholar]
  39. la Thangue N. B., Chan W. L. The characterization and purification of DNA binding proteins present within herpes simplex virus infected cells using monoclonal antibodies. Arch Virol. 1984;79(1-2):13–33. doi: 10.1007/BF01314300. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES