Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Oct 1;162(4):1161–1181. doi: 10.1084/jem.162.4.1161

Regulation of the growth and functions of cloned murine large granular lymphocyte lines by resident macrophages

PMCID: PMC2187859  PMID: 3930651

Abstract

Using cloned lines with the morphology of large granular lymphocytes (LGL) from BALB/c mice, we studied the exact requirements for proliferation and their functional characteristics, as well as their regulation. Although these cloned LGL lines were interleukin 2 (IL-2) dependent for growth, experiments using human recombinant IL-2 (rIL-2), known to be active on murine cells, indicated that IL-2 was a necessary but not sufficient factor. Coexistance of normal macrophages in addition to rIL-2 was found to support continuous proliferation of cloned LGL in vitro. This role of macrophages could be replaced by partially purified IL-1 derived from macrophage-conditioned medium. An IL-2 binding assay using 125I-rIL-2 suggested that the role of normal macrophages was to selectively induce and/or maintain high affinity IL- 2 receptors (IL-2R) (Kd, 0.2-0.5 nM) without affecting low affinity ones (Kd, 10-30 nM). Functional studies indicated that most of the LGL clones killed various combinations of representative groups of natural killer (NK)-susceptible target cells, including leukemic cells (YAC-1, RL male 1), virus-infected cells (HeLa-measles, HeLa-herpes simplex virus), and normal bone marrow cells (BMC), whereas none of them affected any of NK-resistant target cells, including uninfected HeLa cells. Some of these clones also suppressed in vitro hematopoiesis. Such characteristic cytotoxic spectra, as well as serological phenotypes (Thy-1+, Lyt-1-2-, asialo GM1-positive, T200+, TdT-, Fc receptor-positive) indicated that these LGL clones exactly represent endogenous NK cells, rather than a variety of anomalous killer cells generated in various culture conditions. Although there was significant heterogeneity of cytotoxic spectrum among LGL clones, no clonotypic distribution of specificities was observed. Normal macrophages were found to modulate the functional expression of LGL clones. They augmented the cytotoxic potential of the clones against leukemic and virus-infected targets, but suppressed intrinsic reactivity against normal BMC. Similarly, LGL clones maintained with macrophages showed much less suppressive effect on in vitro hematopoiesis. The present observations on the interaction of cloned LGL and normal macrophages provide a basic explanation for the mechanisms by which the immediate responsiveness to IL-2 of the NK effector system, without exogenous stimulation, and the functional selectivity toward abnormal rather than normal cells, are actively maintained in vivo.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrew M. E., Churilla A. M., Malek T. R., Braciale V. L., Braciale T. J. Activation of virus specific CTL clones: antigen-dependent regulation of interleukin 2 receptor expression. J Immunol. 1985 Feb;134(2):920–925. [PubMed] [Google Scholar]
  2. Birrer M. J., Bloom B. R., Udem S. Characterization of measles polypeptides by monoclonal antibodies. Virology. 1981 Jan 30;108(2):381–390. doi: 10.1016/0042-6822(81)90446-3. [DOI] [PubMed] [Google Scholar]
  3. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonnard G. D., Yasaka K., Jacobson D. Ligand-activated T cell growth factor-induced proliferation: absorption of T cell growth factor by activated T cells. J Immunol. 1979 Dec;123(6):2704–2708. [PubMed] [Google Scholar]
  5. Brooks C. G., Kuribayashi K., Sale G. E., Henney C. S. Characterization of five cloned murine cell lines showing high cytolytic activity against YAC-1 cells. J Immunol. 1982 May;128(5):2326–2335. [PubMed] [Google Scholar]
  6. Broome J. D., Jeng M. W. Promotion of replication in lymphoid cells by specific thiols and disulfides in vitro. Effects on mouse lymphoma cells in comparison with splenic lymphocytes. J Exp Med. 1973 Sep 1;138(3):574–592. doi: 10.1084/jem.138.3.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dempsey R. A., Dinarello C. A., Mier J. W., Rosenwasser L. J., Allegretta M., Brown T. E., Parkinson D. R. The differential effects of human leukocyte pyrogen/lymphocyte-activating factor, T cell growth factor, and interferon on human natural killer activity. J Immunol. 1982 Dec;129(6):2504–2510. [PubMed] [Google Scholar]
  8. Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982 Jun 1;155(6):1823–1841. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansson M., Kiessling R., Andersson B. Human fetal thymus and bone marrow contain target cells for natural killer cells. Eur J Immunol. 1981 Jan;11(1):8–12. doi: 10.1002/eji.1830110103. [DOI] [PubMed] [Google Scholar]
  10. Henney C. S., Kuribayashi K., Kern D. E., Gillis S. Interleukin-2 augments natural killer cell activity. Nature. 1981 May 28;291(5813):335–338. doi: 10.1038/291335a0. [DOI] [PubMed] [Google Scholar]
  11. Herberman R. B., Nunn M. E., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975 Aug 15;16(2):216–229. doi: 10.1002/ijc.2910160204. [DOI] [PubMed] [Google Scholar]
  12. Herbert A. G., Le Gros G. S., Bidawid S., Watson J. D. In vivo modulation of thymus-derived lymphocytes with monoclonal antibodies in mice. III. Spontaneous and natural cytotoxic effector cells. Immunology. 1984 Feb;51(2):377–385. [PMC free article] [PubMed] [Google Scholar]
  13. Hercend T., Meuer S., Brennan A., Edson M. A., Acuto O., Reinherz E. L., Schlossman S. F., Ritz J. Identification of a clonally restricted 90 kD heterodimer on two human cloned natural killer cell lines. Its role in cytotoxic effector function. J Exp Med. 1983 Nov 1;158(5):1547–1560. doi: 10.1084/jem.158.5.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hercend T., Meuer S., Reinherz E. L., Schlossman S. F., Ritz J. Generation of a cloned NK cell line derived from the "null cell" fraction of human peripheral blood. J Immunol. 1982 Sep;129(3):1299–1305. [PubMed] [Google Scholar]
  15. Hercend T., Reinherz E. L., Meuer S., Schlossman S. F., Ritz J. Phenotypic and functional heterogeneity of human cloned natural killer cell lines. Nature. 1983 Jan 13;301(5896):158–160. doi: 10.1038/301158a0. [DOI] [PubMed] [Google Scholar]
  16. Holmberg L. A., Miller B. A., Ault K. A. The effect of natural killer cells on the development of syngeneic hematopoietic progenitors. J Immunol. 1984 Dec;133(6):2933–2939. [PubMed] [Google Scholar]
  17. Kajigaya S., Kubota K., Minato N., Sudo T., Hatake K., Iizuka M., Kobayashi S., Saito M., Kano S., Miura Y. A murine cell line (2E10.4.13) produces five hemopoietic stimulators, and interleukin-2 and interleukin-3. Cell Struct Funct. 1985 Jun;10(2):121–131. doi: 10.1247/csf.10.121. [DOI] [PubMed] [Google Scholar]
  18. Kaye J., Gillis S., Mizel S. B., Shevach E. M., Malek T. R., Dinarello C. A., Lachman L. B., Janeway C. A., Jr Growth of a cloned helper T cell line induced by a monoclonal antibody specific for the antigen receptor: interleukin 1 is required for the expression of receptors for interleukin 2. J Immunol. 1984 Sep;133(3):1339–1345. [PubMed] [Google Scholar]
  19. Kedar E., Ikejiri B. L., Sredni B., Bonavida B., Herberman R. B. Propagation of mouse cytotoxic clones with characteristics of natural killer (NK) cells. Cell Immunol. 1982 May 15;69(2):305–329. doi: 10.1016/0008-8749(82)90075-2. [DOI] [PubMed] [Google Scholar]
  20. Kiessling R., Klein E., Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975 Feb;5(2):112–117. doi: 10.1002/eji.1830050208. [DOI] [PubMed] [Google Scholar]
  21. Kodama H. A., Amagai Y., Koyama H., Kasai S. A new preadipose cell line derived from newborn mouse calvaria can promote the proliferation of pluripotent hemopoietic stem cells in vitro. J Cell Physiol. 1982 Jul;112(1):89–95. doi: 10.1002/jcp.1041120114. [DOI] [PubMed] [Google Scholar]
  22. Kuribayashi K., Gillis S., Kern D. E., Henney C. S. Murine NK cell cultures: effects of interleukin-2 and interferon on cell growth and cytotoxic reactivity. J Immunol. 1981 Jun;126(6):2321–2327. [PubMed] [Google Scholar]
  23. Lowenthal J. W., Tougne C., MacDonald H. R., Smith K. A., Nabholz M. Antigenic stimulation regulates the expression of IL 2 receptors in a cytolytic T lymphocyte clone. J Immunol. 1985 Feb;134(2):931–939. [PubMed] [Google Scholar]
  24. Luger T. A., Stadler B. M., Luger B. M., Mathieson B. J., Mage M., Schmidt J. A., Oppenheim J. J. Murine epidermal cell-derived thymocyte-activating factor resembles murine interleukin 1. J Immunol. 1982 May;128(5):2147–2152. [PubMed] [Google Scholar]
  25. Mangan K. F., Hartnett M. E., Matis S. A., Winkelstein A., Abo T. Natural killer cells suppress human erythroid stem cell proliferation in vitro. Blood. 1984 Feb;63(2):260–269. [PubMed] [Google Scholar]
  26. Minato N., Bloom B. R., Jones C., Holland J., Reid L. M. Mechanism of rejection of virus persistently infected tumor cells by athymic nude mice. J Exp Med. 1979 May 1;149(5):1117–1133. doi: 10.1084/jem.149.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Minato N., Reid L., Bloom B. R. On the heterogeneity of murine natural killer cells. J Exp Med. 1981 Sep 1;154(3):750–762. doi: 10.1084/jem.154.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Minato N., Reid L., Cantor H., Lengyel P., Bloom B. R. Mode of regulation of natural killer cell activity by interferon. J Exp Med. 1980 Jul 1;152(1):124–137. doi: 10.1084/jem.152.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nabel G., Bucalo L. R., Allard J., Wigzell H., Cantor H. Multiple activities of a cloned cell line mediating natural killer cell function. J Exp Med. 1981 Jun 1;153(6):1582–1591. doi: 10.1084/jem.153.6.1582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. O'Brien T., Kendra J., Stephens H., Knight R., Barrett A. J. Recognition and regulation of progenitor marrow elements by NK cells in the mouse. Immunology. 1983 Aug;49(4):717–725. [PMC free article] [PubMed] [Google Scholar]
  32. Olabuenaga S. E., Brooks C. G., Gillis S., Henney C. S. Interleukin 2 is not sufficient for the continuous growth of cloned NK-like cytotoxic cell lines. J Immunol. 1983 Nov;131(5):2386–2391. [PubMed] [Google Scholar]
  33. Osawa H., Diamantstein T. A rat monoclonal antibody that binds specifically to mouse T lymphoblasts and inhibits IL 2 receptor functions: a putative anti-IL 2 receptor antibody. J Immunol. 1984 May;132(5):2445–2450. [PubMed] [Google Scholar]
  34. Robb R. J., Greene W. C., Rusk C. M. Low and high affinity cellular receptors for interleukin 2. Implications for the level of Tac antigen. J Exp Med. 1984 Oct 1;160(4):1126–1146. doi: 10.1084/jem.160.4.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robb R. J., Munck A., Smith K. A. T cell growth factor receptors. Quantitation, specificity, and biological relevance. J Exp Med. 1981 Nov 1;154(5):1455–1474. doi: 10.1084/jem.154.5.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Suzuki R., Handa K., Itoh K., Kumagai K. Natural killer (NK) cells as a responder to interleukin 2 (IL 2). I. Proliferative response and establishment of cloned cells. J Immunol. 1983 Feb;130(2):981–987. [PubMed] [Google Scholar]
  37. Timonen T., Saksela E., Ranki A., Häyry P. Fractionation, morphological and functional characterization of effector cells responsible for human natural killer activity against cell-line targets. Cell Immunol. 1979 Nov;48(1):133–148. doi: 10.1016/0008-8749(79)90106-0. [DOI] [PubMed] [Google Scholar]
  38. Trinchieri G., Santoli D. Anti-viral activity induced by culturing lymphocytes with tumor-derived or virus-transformed cells. Enhancement of human natural killer cell activity by interferon and antagonistic inhibition of susceptibility of target cells to lysis. J Exp Med. 1978 May 1;147(5):1314–1333. doi: 10.1084/jem.147.5.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yanagi Y., Caccia N., Kronenberg M., Chin B., Roder J., Rohel D., Kiyohara T., Lauzon R., Toyonaga B., Rosenthal K. Gene rearrangement in cells with natural killer activity and expression of the beta-chain of the T-cell antigen receptor. Nature. 1985 Apr 18;314(6012):631–633. doi: 10.1038/314631a0. [DOI] [PubMed] [Google Scholar]
  40. Yodoi J., Teshigawara K., Nikaido T., Fukui K., Noma T., Honjo T., Takigawa M., Sasaki M., Minato N., Tsudo M. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol. 1985 Mar;134(3):1623–1630. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES