Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1985 Oct 1;162(4):1256–1263. doi: 10.1084/jem.162.4.1256

Cysteine eliminates the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro

PMCID: PMC2187867  PMID: 4045385

Abstract

In all previous studies, bloodstream forms of Trypanosoma brucei could be grown in vitro only when supported by a feeder layer of mammalian fibroblasts. We have axenically cultivated bloodstream T. brucei by adding L-cysteine at regular intervals and appropriate concentrations. The optimum cysteine concentration depends on cell density and is close to physiological serum levels. At concentrations greater than 24 mg/liter (2 X 10(-4) M), cysteine was acutely toxic to trypanosome concentrations of 3 X 10(7)/ml. Toxicity was prevented by addition of pyruvate or catalase, which neutralize H2O2 produced by cysteine autoxidation. In uptake studies using [35S]cysteine and [35S]cystine, T. brucei efficiently incorporated only cysteine. The Km for cysteine uptake was 4 X 10(-4) M. Cystine supported axenic growth if low concentrations of 2-mercaptoethanol were added at regular intervals.

Full Text

The Full Text of this article is available as a PDF (473.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacchi C. J., Vergara C., Garofalo J., Lipschik G. Y., Hutner S. H. Synthesis and content of polyamines in bloodstream Trypanosma brucei. J Protozool. 1979 Aug;26(3):484–488. doi: 10.1111/j.1550-7408.1979.tb04658.x. [DOI] [PubMed] [Google Scholar]
  2. Ballon-Landa G., Douglas H., Colmerauer M. E., Goddard D., Davis C. E. Growth and antigenic variation of Trypanosoma brucei, T. rhodesiense and T. gambiense in subcutaneous millipore chambers. Trans R Soc Trop Med Hyg. 1985;79(1):24–28. doi: 10.1016/0035-9203(85)90224-x. [DOI] [PubMed] [Google Scholar]
  3. Baltz T., Baltz D., Giroud C., Crockett J. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 1985 May;4(5):1273–1277. doi: 10.1002/j.1460-2075.1985.tb03772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bannai S., Ishii T. Transport of cystine and cysteine and cell growth in cultured human diploid fibroblasts: effect of glutamate and homocysteate. J Cell Physiol. 1982 Aug;112(2):265–272. doi: 10.1002/jcp.1041120216. [DOI] [PubMed] [Google Scholar]
  5. Brigham M. P., Stein W. H., Moore S. THE CONCENTRATIONS OF CYSTEINE AND CYSTINE IN HUMAN BLOOD PLASMA. J Clin Invest. 1960 Nov;39(11):1633–1638. doi: 10.1172/JCI104186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brun R., Jenni L., Schönenberger M., Schell K. F. In vitro cultivation of bloodstream forms of Trypanosoma brucei, T. rhodesiense, and T. gambiense. J Protozool. 1981 Nov;28(4):470–479. doi: 10.1111/j.1550-7408.1981.tb05322.x. [DOI] [PubMed] [Google Scholar]
  7. Brun R., Schönenberger Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop. 1979 Sep;36(3):289–292. [PubMed] [Google Scholar]
  8. Capbern A., Pautrizel A. N., Mattern P., Pautrizel R. Trypanosoma equiperdum: multiplication dans des chambres de diffusion implantées chez la souris. Exp Parasitol. 1977 Oct;43(1):1–11. doi: 10.1016/0014-4894(77)90002-9. [DOI] [PubMed] [Google Scholar]
  9. Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
  10. Cross G. A., Manning J. C. Cultivation of Trypanosoma brucei sspp. in semi-defined and defined media. Parasitology. 1973 Dec;67(3):315–331. doi: 10.1017/s0031182000046540. [DOI] [PubMed] [Google Scholar]
  11. Cunningham I., Taylor A. M. Infectivity of Trypanosoma brucei cultivated at 28 C with tsetse fly salivary glands. J Protozool. 1979 Aug;26(3):428–432. doi: 10.1111/j.1550-7408.1979.tb04649.x. [DOI] [PubMed] [Google Scholar]
  12. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  13. Fedorcsák I., Harms-Ringdahl M., Ehrenberg L. Prevention of sulfhydryl autoxidation by a polypeptide from red kidney beans, described to be a stimulator of RNA synthesis. Exp Cell Res. 1977 Sep;108(2):331–339. doi: 10.1016/s0014-4827(77)80040-2. [DOI] [PubMed] [Google Scholar]
  14. Ferguson M. A., Cross G. A. Myristylation of the membrane form of a Trypanosoma brucei variant surface glycoprotein. J Biol Chem. 1984 Mar 10;259(5):3011–3015. [PubMed] [Google Scholar]
  15. Fish W. R., Marr J. J., Berens R. L. Purine metabolism in Trypanosoma brucei gambiense. Biochim Biophys Acta. 1982 Feb 25;714(3):422–428. doi: 10.1016/0304-4165(82)90149-0. [DOI] [PubMed] [Google Scholar]
  16. HIGUCHI K. Studies on the nutrition and metabolism of animal cells in serum-free media. I. Serum-free monolayer cultures. J Infect Dis. 1963 May-Jun;112:213–220. doi: 10.1093/infdis/112.3.213. [DOI] [PubMed] [Google Scholar]
  17. Hirumi H., Doyle J. J., Hirumi K. African trypanosomes: cultivation of animal-infective Trypanosoma brucei in vitro. Science. 1977 May 27;196(4293):992–994. doi: 10.1126/science.558652. [DOI] [PubMed] [Google Scholar]
  18. Ishii T., Hishinuma I., Bannai S., Sugita Y. Mechanism of growth promotion of mouse lymphoma L1210 cells in vitro by feeder layer or 2-mercaptoethanol. J Cell Physiol. 1981 May;107(2):283–293. doi: 10.1002/jcp.1041070215. [DOI] [PubMed] [Google Scholar]
  19. James D. M., Born G. V. Uptake of purine bases and nucleosides in African trypanosomes. Parasitology. 1980 Oct;81(2):383–393. doi: 10.1017/s0031182000056110. [DOI] [PubMed] [Google Scholar]
  20. Meshnick S. R., Blobstein S. H., Grady R. W., Cerami A. An approach to the development of new drugs for African trypanosomiasis. J Exp Med. 1978 Aug 1;148(2):569–579. doi: 10.1084/jem.148.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ohmori H., Yamamoto I. Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes. I. 2-Mercaptoethanol-induced stimulation of the uptake of cystine, an essential amino acid. J Exp Med. 1982 May 1;155(5):1277–1290. doi: 10.1084/jem.155.5.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orloff S., Mukherjee A. B., Butler J. D., Foley B., Schulman J. D. Cystinotic and normal fibroblasts: differential susceptibility to cysteine toxicity in vitro. In Vitro. 1980 Aug;16(8):655–660. doi: 10.1007/BF02619194. [DOI] [PubMed] [Google Scholar]
  23. Rifkin M. R., Fairlamb A. H. Transport of ethanolamine and its incorporation into the variant surface glycoprotein of bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol. 1985 Jun;15(3):245–256. doi: 10.1016/0166-6851(85)90088-x. [DOI] [PubMed] [Google Scholar]
  24. TOBIE E. J. The cultivation of Trypanosoma congolense in vitro. J Parasitol. 1958 Apr;44(2):241–242. [PubMed] [Google Scholar]
  25. Tanner M. Studies on the mechanisms supporting the continuous growth of Trypanosoma (Trypanozoon) brucei as bloodstream-like form in vitro. Acta Trop. 1980 Sep;37(3):203–220. [PubMed] [Google Scholar]
  26. Tizard I. R., Holmes W. L. The release of soluble vasoactive material from Trypanosoma congolense in intraperitoneal diffusion chambers. Trans R Soc Trop Med Hyg. 1977;71(1):52–55. doi: 10.1016/0035-9203(77)90208-5. [DOI] [PubMed] [Google Scholar]
  27. Toohey J. I. Sulfhydryl dependence in primary explant hematopoietic cells. Inhibition of growth in vitro with vitamin B12 compounds. Proc Natl Acad Sci U S A. 1975 Jan;72(1):73–77. doi: 10.1073/pnas.72.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES