Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 May 1;171(5):1419–1430. doi: 10.1084/jem.171.5.1419

MHC class II-derived peptides can bind to class II molecules, including self molecules, and prevent antigen presentation

PMCID: PMC2187911  PMID: 2332729

Abstract

Seven synthetic peptides corresponding to the polymorphic regions of the alpha and beta chains of the I-Ak molecule were examined for their ability to inhibit the presentation of foreign antigens to antigen- specific, I-A-restricted T cell hybridomas. Two of the peptides, representing the sequences found in the first and third polymorphic regions (PMR) of the A alpha k chain (alpha k-1 and alpha k-3) were capable of inhibiting the presentation of three different HEL-derived peptide antigens to their appropriate T cells. In addition, the alpha k- 1 peptide inhibited the presentation of the OVA(323-339) immunodominant peptide to the I-Ad-restricted T cell hybridomas specific for it. Prepulsing experiments demonstrated that the PMR peptides were interacting with the APC and not with the T cell hybridomas. These observations were confirmed and extended by the demonstration that the alpha k-1 and alpha k-3 peptides blocked the direct binding of HEL(46- 61) to purified I-Ak and that the alpha k-1 peptide blocked the binding of OVA(323-339) to I-Ad. The binding competition experiments suggest that the alpha k-1 peptide binds to the I-Ak molecule from which it was derived with a Kd approximately 10(-5) M, while the alpha k-3 peptide binds slightly less well. These combined data, suggesting that class II- derived peptides can bind to MHC class II molecules, including the autologous molecule from which they are derived, have important implications for the molecular basis of alloreactivity and autoreactivity. Further, they suggest a possible mechanism by which selecting elements, involving only MHC molecules, may be generated in the thymus.

Full Text

The Full Text of this article is available as a PDF (770.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajitkumar P., Geier S. S., Kesari K. V., Borriello F., Nakagawa M., Bluestone J. A., Saper M. A., Wiley D. C., Nathenson S. G. Evidence that multiple residues on both the alpha-helices of the class I MHC molecule are simultaneously recognized by the T cell receptor. Cell. 1988 Jul 1;54(1):47–56. doi: 10.1016/0092-8674(88)90178-x. [DOI] [PubMed] [Google Scholar]
  2. Allen P. M., Babbitt B. P., Unanue E. R. T-cell recognition of lysozyme: the biochemical basis of presentation. Immunol Rev. 1987 Aug;98:171–187. doi: 10.1111/j.1600-065x.1987.tb00524.x. [DOI] [PubMed] [Google Scholar]
  3. Babbitt B. P., Allen P. M., Matsueda G., Haber E., Unanue E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. 1985 Sep 26-Oct 2Nature. 317(6035):359–361. doi: 10.1038/317359a0. [DOI] [PubMed] [Google Scholar]
  4. Bishop G. A., Haughton G. Induced differentiation of a transformed clone of Ly-1+ B cells by clonal T cells and antigen. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7410–7414. doi: 10.1073/pnas.83.19.7410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  6. Bogen B., Malissen B., Haas W. Idiotope-specific T cell clones that recognize syngeneic immunoglobulin fragments in the context of class II molecules. Eur J Immunol. 1986 Nov;16(11):1373–1378. doi: 10.1002/eji.1830161110. [DOI] [PubMed] [Google Scholar]
  7. Braciale T. J., Morrison L. A., Sweetser M. T., Sambrook J., Gething M. J., Braciale V. L. Antigen presentation pathways to class I and class II MHC-restricted T lymphocytes. Immunol Rev. 1987 Aug;98:95–114. doi: 10.1111/j.1600-065x.1987.tb00521.x. [DOI] [PubMed] [Google Scholar]
  8. Buus S., Colon S., Smith C., Freed J. H., Miles C., Grey H. M. Interaction between a "processed" ovalbumin peptide and Ia molecules. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3968–3971. doi: 10.1073/pnas.83.11.3968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buus S., Sette A., Colon S. M., Grey H. M. Autologous peptides constitutively occupy the antigen binding site on Ia. Science. 1988 Nov 18;242(4881):1045–1047. doi: 10.1126/science.3194755. [DOI] [PubMed] [Google Scholar]
  10. Buus S., Sette A., Colon S. M., Jenis D. M., Grey H. M. Isolation and characterization of antigen-Ia complexes involved in T cell recognition. Cell. 1986 Dec 26;47(6):1071–1077. doi: 10.1016/0092-8674(86)90822-6. [DOI] [PubMed] [Google Scholar]
  11. Buus S., Sette A., Colon S. M., Miles C., Grey H. M. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science. 1987 Mar 13;235(4794):1353–1358. doi: 10.1126/science.2435001. [DOI] [PubMed] [Google Scholar]
  12. Buus S., Sette A., Grey H. M. The interaction between protein-derived immunogenic peptides and Ia. Immunol Rev. 1987 Aug;98:115–141. doi: 10.1111/j.1600-065x.1987.tb00522.x. [DOI] [PubMed] [Google Scholar]
  13. Chen B. P., Parham P. Direct binding of influenza peptides to class I HLA molecules. Nature. 1989 Feb 23;337(6209):743–745. doi: 10.1038/337743a0. [DOI] [PubMed] [Google Scholar]
  14. Clayberger C., Parham P., Rothbard J., Ludwig D. S., Schoolnik G. K., Krensky A. M. HLA-A2 peptides can regulate cytolysis by human allogeneic T lymphocytes. Nature. 1987 Dec 24;330(6150):763–765. doi: 10.1038/330763a0. [DOI] [PubMed] [Google Scholar]
  15. Eckels D. D., Gorski J., Rothbard J., Lamb J. R. Peptide-mediated modulation of T-cell allorecognition. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8191–8195. doi: 10.1073/pnas.85.21.8191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haas W., Mathur-Rochat J., Kisielow P., von Boehmer H. Cytolytic T cell hybridomas. III. The antigen specificity and the restriction specificity of cytolytic T cells do not phenotypically mix. Eur J Immunol. 1985 Sep;15(9):963–965. doi: 10.1002/eji.1830150919. [DOI] [PubMed] [Google Scholar]
  18. Kappler J., White J., Wegmann D., Mustain E., Marrack P. Antigen presentation by Ia+ B cell hybridomas to H-2-restricted T cell hybridomas. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3604–3607. doi: 10.1073/pnas.79.11.3604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kim K. J., Kanellopoulos-Langevin C., Merwin R. M., Sachs D. H., Asofsky R. Establishment and characterization of BALB/c lymphoma lines with B cell properties. J Immunol. 1979 Feb;122(2):549–554. [PubMed] [Google Scholar]
  20. Lorenz R. G., Allen P. M. Direct evidence for functional self-protein/Ia-molecule complexes in vivo. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5220–5223. doi: 10.1073/pnas.85.14.5220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lorenz R. G., Allen P. M. Thymic cortical epithelial cells can present self-antigens in vivo. Nature. 1989 Feb 9;337(6207):560–562. doi: 10.1038/337560a0. [DOI] [PubMed] [Google Scholar]
  22. Lorenz R., Allen P. M. Processing and presentation of self proteins. Immunol Rev. 1988 Dec;106:115–127. doi: 10.1111/j.1600-065x.1988.tb00776.x. [DOI] [PubMed] [Google Scholar]
  23. Maryanski J. L., Pala P., Corradin G., Jordan B. R., Cerottini J. C. H-2-restricted cytolytic T cells specific for HLA can recognize a synthetic HLA peptide. Nature. 1986 Dec 11;324(6097):578–579. doi: 10.1038/324578a0. [DOI] [PubMed] [Google Scholar]
  24. Merrifield R. B., Vizioli L. D., Boman H. G. Synthesis of the antibacterial peptide cecropin A (1-33). Biochemistry. 1982 Sep 28;21(20):5020–5031. doi: 10.1021/bi00263a028. [DOI] [PubMed] [Google Scholar]
  25. Murphy D. B., Lo D., Rath S., Brinster R. L., Flavell R. A., Slanetz A., Janeway C. A., Jr A novel MHC class II epitope expressed in thymic medulla but not cortex. Nature. 1989 Apr 27;338(6218):765–768. doi: 10.1038/338765a0. [DOI] [PubMed] [Google Scholar]
  26. Olson C. A., Williams L. C., McLaughlin-Taylor E., McMillan M. Creation of H-2 class I epitopes using synthetic peptides: recognition by alloreactive cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1989 Feb;86(3):1031–1035. doi: 10.1073/pnas.86.3.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pala P., Corradin G., Strachan T., Sodoyer R., Jordan B. R., Cerottini J. C., Maryanski J. L. Mapping of HLA epitopes recognized by H-2-restricted cytotoxic T lymphocytes specific for HLA using recombinant genes and synthetic peptides. J Immunol. 1988 Feb 1;140(3):871–877. [PubMed] [Google Scholar]
  28. Parham P., Clayberger C., Zorn S. L., Ludwig D. S., Schoolnik G. K., Krensky A. M. Inhibition of alloreactive cytotoxic T lymphocytes by peptides from the alpha 2 domain of HLA-A2. Nature. 1987 Feb 12;325(6105):625–628. doi: 10.1038/325625a0. [DOI] [PubMed] [Google Scholar]
  29. Rosloniec E. F., Gay D., Freed J. H. Epitopic analysis by anti-I-Ak monoclonal antibodies of I-Ak-restricted presentation of lysozyme peptides. J Immunol. 1989 Jun 15;142(12):4176–4183. [PubMed] [Google Scholar]
  30. Shimonkevitz R., Colon S., Kappler J. W., Marrack P., Grey H. M. Antigen recognition by H-2-restricted T cells. II. A tryptic ovalbumin peptide that substitutes for processed antigen. J Immunol. 1984 Oct;133(4):2067–2074. [PubMed] [Google Scholar]
  31. Song E. S., Linsk R., Olson C. A., McMillan M., Goodenow R. S. Allospecific cytotoxic T lymphocytes recognize an H-2 peptide in the context of a murine major histocompatibility complex class I molecule. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1927–1931. doi: 10.1073/pnas.85.6.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Townsend A., Bodmer H. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol. 1989;7:601–624. doi: 10.1146/annurev.iy.07.040189.003125. [DOI] [PubMed] [Google Scholar]
  33. Walker E., Warner N. L., Chesnut R., Kappler J., Marrack P. Antigen-specific. I region-restricted interactions in vitro between tumor cell lines and T cell hybridomas. J Immunol. 1982 May;128(5):2164–2169. [PubMed] [Google Scholar]
  34. Watson J. Continuous proliferation of murine antigen-specific helper T lymphocytes in culture. J Exp Med. 1979 Dec 1;150(6):1510–1519. doi: 10.1084/jem.150.6.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Winchester G., Sunshine G. H., Nardi N., Mitchison N. A. Antigen-presenting cells do not discriminate between self and nonself. Immunogenetics. 1984;19(6):487–491. doi: 10.1007/BF00403439. [DOI] [PubMed] [Google Scholar]
  36. Yagüe J., White J., Coleclough C., Kappler J., Palmer E., Marrack P. The T cell receptor: the alpha and beta chains define idiotype, and antigen and MHC specificity. Cell. 1985 Aug;42(1):81–87. doi: 10.1016/s0092-8674(85)80103-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES