Abstract
We have established the DU.528 cell line from the pretreatment leukemia cells of a patient who underwent a T lymphoblastic-to-promyelocytic phenotype conversion during treatment with the adenosine deaminase inhibitor, deoxycoformycin. The cell line and clones obtained from it by limiting dilution have the same karyotype previously found in the patient's pretreatment T lymphoblasts and post-deoxycoformycin treatment promyelocytes. DU.528 cells in continuous culture for greater than 2 yr display a predominant undifferentiated T lymphoblastoid phenotype. These cells spontaneously generate progeny of at least three lineages, T lymphoid, granulocytic/monocytic, and erythroid. The surface marker most consistently expressed by DU.528 cells in the undifferentiated state is the 3A1 antigen, which has been found on prothymocytes in the embryonic thymus. Some undifferentiated DU.528 cells also expressed the IL-2 receptor, but no other T cell differentiation antigens. Exposure of DU.528 cells to a variety of agents induced myeloid maturation; adenosine and deoxyadenosine, in the presence of deoxycoformycin, induced expression of myeloid differentiation antigens. Our results suggest that DU.528 is a lymphohematopoietic stem cell line and support the hypothesis that differentiation of pluripotent stem cells may be altered by genetic deficiency of adenosine deaminase. DU.528 cells may provide a useful model for examining factors that regulate stem cell proliferation and differentiation.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abboud C. N., DiPersio J. F., Brennan J. K., Lichtman M. A. Erythropoietic enhancing activity (EEA) secreted by the human cell line, GCT. J Supramol Struct. 1980;13(2):199–209. doi: 10.1002/jss.400130208. [DOI] [PubMed] [Google Scholar]
- Anderson K. C., Bates M. P., Slaughenhoupt B. L., Pinkus G. S., Schlossman S. F., Nadler L. M. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood. 1984 Jun;63(6):1424–1433. [PubMed] [Google Scholar]
- Aye M. T., Niho Y., Till J. E., McCulloch E. A. Studies of leukemic cell populations in culture. Blood. 1974 Aug;44(2):205–219. [PubMed] [Google Scholar]
- Bollum F. J. Terminal deoxynucleotidyl transferase as a hematopoietic cell marker. Blood. 1979 Dec;54(6):1203–1215. [PubMed] [Google Scholar]
- Fauser A. A., Kanz L., Bross K. J., Löhr G. W. T cells and probably B cells arise from the malignant clone in chronic myelogenous leukemia. J Clin Invest. 1985 Mar;75(3):1080–1082. doi: 10.1172/JCI111771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fialkow P. J., Denman A. M., Jacobson R. J., Lowenthal M. N. Chronic myelocytic leukemia. Origin of some lymphocytes from leukemic stem cells. J Clin Invest. 1978 Oct;62(4):815–823. doi: 10.1172/JCI109193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fialkow P. J., Jacobson R. J., Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med. 1977 Jul;63(1):125–130. doi: 10.1016/0002-9343(77)90124-3. [DOI] [PubMed] [Google Scholar]
- Garrett C., Kredich N. M. Induction of hemoglobin synthesis by xylosyladenine in murine erythroleukemia cells. Metabolism of xylosyladenine and effects on transmethylation. J Biol Chem. 1981 Dec 25;256(24):12705–12709. [PubMed] [Google Scholar]
- Green H., Chan T. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase. Science. 1973 Nov 23;182(4114):836–837. doi: 10.1126/science.182.4114.836. [DOI] [PubMed] [Google Scholar]
- Hanker J. S., Yates P. E., Metz C. B., Rustioni A. A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J. 1977 Nov;9(6):789–792. doi: 10.1007/BF01003075. [DOI] [PubMed] [Google Scholar]
- Harden E. A., Haynes B. F. Phenotypic and functional characterization of human malignant T cells. Semin Hematol. 1985 Jan;22(1):13–26. [PubMed] [Google Scholar]
- Haynes B. F., Eisenbarth G. S., Fauci A. S. Human lymphocyte antigens: production of a monoclonal antibody that defines functional thymus-derived lymphocyte subsets. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5829–5833. doi: 10.1073/pnas.76.11.5829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haynes B. F. Human T lymphocyte antigens as defined by monoclonal antibodies. Immunol Rev. 1981;57:127–161. doi: 10.1111/j.1600-065x.1981.tb00445.x. [DOI] [PubMed] [Google Scholar]
- Hershfield M. S., Kurtzberg J., Harden E., Moore J. O., Whang-Peng J., Haynes B. F. Conversion of a stem cell leukemia from a T-lymphoid to a myeloid phenotype induced by the adenosine deaminase inhibitor 2'-deoxycoformycin. Proc Natl Acad Sci U S A. 1984 Jan;81(1):253–257. doi: 10.1073/pnas.81.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huebers H. A., Finch C. A. Transferrin: physiologic behavior and clinical implications. Blood. 1984 Oct;64(4):763–767. [PubMed] [Google Scholar]
- Hull M. T., Griep J. A. Mixed leukemia, lymphatic and myelomonocytic. Am J Clin Pathol. 1980 Oct;74(4):473–475. doi: 10.1093/ajcp/74.4.473. [DOI] [PubMed] [Google Scholar]
- Koeffler H. P. Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. Blood. 1983 Oct;62(4):709–721. [PubMed] [Google Scholar]
- Leary A. G., Ogawa M., Strauss L. C., Civin C. I. Single cell origin of multilineage colonies in culture. Evidence that differentiation of multipotent progenitors and restriction of proliferative potential of monopotent progenitors are stochastic processes. J Clin Invest. 1984 Dec;74(6):2193–2197. doi: 10.1172/JCI111645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marie J. P., Izaguirre C. A., Civin C. I., Mirro J., McCulloch E. A. The presence within single K-562 cells of erythropoietic and granulopoietic differentiation markers. Blood. 1981 Oct;58(4):708–711. [PubMed] [Google Scholar]
- McCulloch E. A. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood. 1983 Jul;62(1):1–13. [PubMed] [Google Scholar]
- McFarland E. J., Scearce R. M., Haynes B. F. The human thymic microenvironment: cortical thymic epithelium is an antigenically distinct region of the thymic microenvironment. J Immunol. 1984 Sep;133(3):1241–1249. [PubMed] [Google Scholar]
- Messner H. A., Izaquirre C. A., Jamal N. Identification of T lymphocytes in human mixed hemopoietic colonies. Blood. 1981 Aug;58(2):402–405. [PubMed] [Google Scholar]
- Murphy S. B., Stass S., Kalwinsky D., Rivera G. Phenotypic conversion of acute leukaemia from T-lymphoblastic to myeloblastic induced by therapy with 2'-deoxycoformycin. Br J Haematol. 1983 Oct;55(2):285–293. doi: 10.1111/j.1365-2141.1983.tb01249.x. [DOI] [PubMed] [Google Scholar]
- Paietta E., Dutcher J. P., Wiernik P. H. Terminal transferase positive acute promyelocytic leukemia: in vitro differentiation of a T-lymphocytic/promyelocytic hybrid phenotype. Blood. 1985 Jan;65(1):107–114. [PubMed] [Google Scholar]
- Palumbo A., Minowada J., Erikson J., Croce C. M., Rovera G. Lineage infidelity of a human myelogenous leukemia cell line. Blood. 1984 Nov;64(5):1059–1063. [PubMed] [Google Scholar]
- Perentesis J., Ramsay N. K., Brunning R., Kersey J. H., Filipovich A. H. Biphenotypic leukemia: immunologic and morphologic evidence for a common lymphoid-myeloid progenitor in humans. J Pediatr. 1983 Jan;102(1):63–67. doi: 10.1016/s0022-3476(83)80288-1. [DOI] [PubMed] [Google Scholar]
- Pui C. H., Dahl G. V., Melvin S., Williams D. L., Peiper S., Mirro J., Murphy S. B., Stass S. Acute leukaemia with mixed lymphoid and myeloid phenotype. Br J Haematol. 1984 Jan;56(1):121–130. doi: 10.1111/j.1365-2141.1984.tb01277.x. [DOI] [PubMed] [Google Scholar]
- Raulet D. H. Expression and function of interleukin-2 receptors on immature thymocytes. Nature. 1985 Mar 7;314(6006):101–103. doi: 10.1038/314101a0. [DOI] [PubMed] [Google Scholar]
- Romain P. L., Schlossman S. F. Human T lymphocyte subsets. Functional heterogeneity and surface recognition structures. J Clin Invest. 1984 Nov;74(5):1559–1565. doi: 10.1172/JCI111571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs L. Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukaemia. Nature. 1978 Aug 10;274(5671):535–539. doi: 10.1038/274535a0. [DOI] [PubMed] [Google Scholar]
- Schiff R. I., Buckley R. H., Gilbertsen R. B., Metzgar R. S. Membrane receptors and in vitro responsiveness of lymphocytes in human immunodeficiency. J Immunol. 1974 Jan;112(1):376–386. [PubMed] [Google Scholar]
- Schroff R. W., Foon K. A. Heterogeneity in a lymphoid tumor: coexpression of T and B surface markers. Blood. 1982 Aug;60(2):373–380. [PubMed] [Google Scholar]
- Seabright M. A rapid banding technique for human chromosomes. Lancet. 1971 Oct 30;2(7731):971–972. doi: 10.1016/s0140-6736(71)90287-x. [DOI] [PubMed] [Google Scholar]
- Segal A. W. Nitroblue-tetrazolium tests. Lancet. 1974 Nov 23;2(7891):1248–1252. doi: 10.1016/s0140-6736(74)90758-2. [DOI] [PubMed] [Google Scholar]
- Smith L. J., Curtis J. E., Messner H. A., Senn J. S., Furthmayr H., McCulloch E. A. Lineage infidelity in acute leukemia. Blood. 1983 Jun;61(6):1138–1145. [PubMed] [Google Scholar]
- Sporn M. B., Roberts A. B. Autocrine growth factors and cancer. 1985 Feb 28-Mar 6Nature. 313(6005):745–747. doi: 10.1038/313745a0. [DOI] [PubMed] [Google Scholar]
- Sporn M. B., Todaro G. J. Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980 Oct 9;303(15):878–880. doi: 10.1056/NEJM198010093031511. [DOI] [PubMed] [Google Scholar]
- TILL J. E., MCCULLOCH E. A., SIMINOVITCH L. A STOCHASTIC MODEL OF STEM CELL PROLIFERATION, BASED ON THE GROWTH OF SPLEEN COLONY-FORMING CELLS. Proc Natl Acad Sci U S A. 1964 Jan;51:29–36. doi: 10.1073/pnas.51.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uchiyama T., Broder S., Waldmann T. A. A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J Immunol. 1981 Apr;126(4):1393–1397. [PubMed] [Google Scholar]