Abstract
The Eta-1 gene specifies a secreted product of activated T cells and is associated with genetic resistance to infection by an obligate intracellular bacterium. Previous studies have suggested that eta-1 might affect the ability of macrophages to migrate to the site of bacterial infection and/or to inhibit intracellular bacterial growth. We therefore examined the interaction of eta-1 with macrophages in vitro and in vivo. We find that macrophages express approximately 10(4) eta-1 receptors/cell and each receptor has a Kd of approximately 5 x 10(-10) M. The subsequence of eta-1 containing an RGD motif is required for binding because a synthetic peptide containing the eta-1 RGD domain inhibited protein attachment to macrophages. We also found that subcutaneous inoculation of mice with eta-1 resulted in a cellular infiltrate comprised primarily of macrophages. We propose that the interaction between eta-1 and its receptor on macrophages results in a change in macrophage physiology resulting in accumulation of these cells at extravascular sites.
Full Text
The Full Text of this article is available as a PDF (950.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebersold R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. doi: 10.1073/pnas.84.20.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aiyer R. A., Serrano L. E., Jones P. P. Interferon-gamma binds to high and low affinity receptor components on murine macrophages. J Immunol. 1986 May 1;136(9):3329–3334. [PubMed] [Google Scholar]
- Anderson P., Yip Y. K., Vilcek J. Specific binding of 125I-human interferon-gamma to high affinity receptors on human fibroblasts. J Biol Chem. 1982 Oct 10;257(19):11301–11304. [PubMed] [Google Scholar]
- Bevilacqua M. P., Amrani D., Mosesson M. W., Bianco C. Receptors for cold-insoluble globulin (plasma fibronectin) on human monocytes. J Exp Med. 1981 Jan 1;153(1):42–60. doi: 10.1084/jem.153.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celada A., Gray P. W., Rinderknecht E., Schreiber R. D. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J Exp Med. 1984 Jul 1;160(1):55–74. doi: 10.1084/jem.160.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Churchill W. H., Jr, Piessens W. F., Sulis C. A., David J. R. Macrophages activated as suspension cultures with lymphocyte mediators devoid of antigen become cytotoxic for tumor cells. J Immunol. 1975 Sep;115(3):781–786. [PMC free article] [PubMed] [Google Scholar]
- Friedman S., Sillcocks D., Rao A., Faas S., Cantor H. A subset of Ly-1 inducer T cell clones activates B cell proliferation but directly inhibits subsequent IgG secretion. J Exp Med. 1985 Apr 1;161(4):785–804. doi: 10.1084/jem.161.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hübner L., Kniep E. M., Laukel H., Sorg C., Fischer H., Gassel W. D., Havemann K., Kickhöfen B., Lohmann-Matthes M. L., Schimpl A. Chemical characterization of macrophage cytotoxicity factor, macrophage migration inhibitory factor, T-helper cell-replacing factor and colony-stimulating factor from culture supernatants of concanavalin A-stimulated murine spleen cells. Immunobiology. 1980 Jul;157(2):169–178. doi: 10.1016/S0171-2985(80)80098-2. [DOI] [PubMed] [Google Scholar]
- Kleinerman E. S., Schroit A. J., Fogler W. E., Fidler I. J. Tumoricidal activity of human monocytes activated in vitro by free and liposome-encapsulated human lymphokines. J Clin Invest. 1983 Jul;72(1):304–315. doi: 10.1172/JCI110970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kniep E. M., Domzig W., Lohmann-Matthes M. L., Kickhöfen B. Partial purification and chemical characterization of macrophage cytotoxicity factor (MCF, MAF) and its separation from migration inhibitory factor (MIF). J Immunol. 1981 Aug;127(2):417–422. [PubMed] [Google Scholar]
- Markwell M. A. A new solid-state reagent to iodinate proteins. I. Conditions for the efficient labeling of antiserum. Anal Biochem. 1982 Sep 15;125(2):427–432. doi: 10.1016/0003-2697(82)90025-2. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Patarca R., Freeman G. J., Schwartz J., Singh R. P., Kong Q. T., Murphy E., Anderson Y., Sheng F. Y., Singh P., Johnson K. A. rpt-1, an intracellular protein from helper/inducer T cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2733–2737. doi: 10.1073/pnas.85.8.2733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patarca R., Freeman G. J., Singh R. P., Wei F. Y., Durfee T., Blattner F., Regnier D. C., Kozak C. A., Mock B. A., Morse H. C., 3rd Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J Exp Med. 1989 Jul 1;170(1):145–161. doi: 10.1084/jem.170.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao A., Allard W. J., Hogan P. G., Rosenson R. S., Cantor H. Alloreactive T-cell clones. Ly phenotypes predict both function and specificity for major histocompatibility complex products. Immunogenetics. 1983;17(2):147–165. doi: 10.1007/BF00364755. [DOI] [PubMed] [Google Scholar]
- Rao A., Ko W. W., Faas S. J., Cantor H. Binding of antigen in the absence of histocompatibility proteins by arsonate-reactive T-cell clones. Cell. 1984 Apr;36(4):879–888. doi: 10.1016/0092-8674(84)90037-0. [DOI] [PubMed] [Google Scholar]
- Redinbaugh M. G., Turley R. B. Adaptation of the bicinchoninic acid protein assay for use with microtiter plates and sucrose gradient fractions. Anal Biochem. 1986 Mar;153(2):267–271. doi: 10.1016/0003-2697(86)90091-6. [DOI] [PubMed] [Google Scholar]
- Reed J., Hull W. E., von der Lieth C. W., Kübler D., Suhai S., Kinzel V. Secondary structure of the Arg-Gly-Asp recognition site in proteins involved in cell-surface adhesion. Evidence for the occurrence of nested beta-bends in the model hexapeptide GRGDSP. Eur J Biochem. 1988 Dec 1;178(1):141–154. doi: 10.1111/j.1432-1033.1988.tb14439.x. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E., Pierschbacher M. D. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986 Feb 28;44(4):517–518. doi: 10.1016/0092-8674(86)90259-x. [DOI] [PubMed] [Google Scholar]
- Sheehan K. C., Calderon J., Schreiber R. D. Generation and characterization of monoclonal antibodies specific for the human IFN-gamma receptor. J Immunol. 1988 Jun 15;140(12):4231–4237. [PubMed] [Google Scholar]
- Singh J. P., Bonin P. D. Purification and biochemical properties of a human monocyte-derived growth factor. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6374–6378. doi: 10.1073/pnas.85.17.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Springer T. A., Dustin M. L., Kishimoto T. K., Marlin S. D. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
- Wright S. D., Meyer B. C. Fibronectin receptor of human macrophages recognizes the sequence Arg-Gly-Asp-Ser. J Exp Med. 1985 Aug 1;162(2):762–767. doi: 10.1084/jem.162.2.762. [DOI] [PMC free article] [PubMed] [Google Scholar]