Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Jun 1;171(6):2011–2024. doi: 10.1084/jem.171.6.2011

Specific killing of cytotoxic T cells and antigen-presenting cells by CD4+ cytotoxic T cell clones. A novel potentially immunoregulatory T-T cell interaction in man

PMCID: PMC2187955  PMID: 1972178

Abstract

Mycobacterial antigens not only stimulate Th cells that produce macrophage-activating factors, but also CD4+ and CD8+ CTL that lyse human macrophages. The mycobacterial recombinant 65-kD hsp was previously found to be an important target antigen for polyclonal CD4+ CTL. Because of the major role of 65-kD hsp in the immune response to mycobacterial as well as autoantigens, we have studied CTL activity to this protein at the clonal level. HLA-DR or HLA-DQ restricted, CD4+CD8- T cell clones that recognize different peptides of the M. leprae 65-kD hsp strongly lysed EBV-BLCL pulsed with specific but not irrelevant peptide. No bystander lysis of B cells, T cells, or tumor cells was seen. Target cell lysis could not be triggered by PMA + Ca2+ ionophore alone and depended on active metabolism. Interestingly, these CD4+ CTL also strongly lysed themselves and other HLA-class II compatible CD4+ (TCR-alpha/beta or -gamma/delta) or CD8+ CTL clones in the presence of peptide, suggesting that CTL are not actively protected from CTL- mediated lysis. Cold target competition experiments suggested that EBV- BLCL targets were more efficiently recognized than CD4+ CTL targets. These results demonstrate that hsp65 peptide-specific HLA class II- restricted CD4+ T cell clones display strong peptide-dependent cytolytic activity towards both APCs, and, unexpectedly, CD4+ and CD8+ CTL clones, including themselves. Since, in contrast to murine T cells human T cells express class II, CTL-mediated T cell killing may represent a novel immunoregulatory pathway in man.

Full Text

The Full Text of this article is available as a PDF (827.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. C., van Schooten W. C., Barry M. E., Janson A. A., Buchanan T. M., de Vries R. R. A Mycobacterium leprae-specific human T cell epitope cross-reactive with an HLA-DR2 peptide. Science. 1988 Oct 14;242(4876):259–261. doi: 10.1126/science.2459778. [DOI] [PubMed] [Google Scholar]
  2. Blakely A., Gorman K., Ostergaard H., Svoboda K., Liu C. C., Young J. D., Clark W. R. Resistance of cloned cytotoxic T lymphocytes to cell-mediated cytotoxicity. J Exp Med. 1987 Oct 1;166(4):1070–1083. doi: 10.1084/jem.166.4.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buus S., Sette A., Colon S. M., Jenis D. M., Grey H. M. Isolation and characterization of antigen-Ia complexes involved in T cell recognition. Cell. 1986 Dec 26;47(6):1071–1077. doi: 10.1016/0092-8674(86)90822-6. [DOI] [PubMed] [Google Scholar]
  4. Cher D. J., Mosmann T. R. Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol. 1987 Jun 1;138(11):3688–3694. [PubMed] [Google Scholar]
  5. Cooper C. L., Mueller C., Sinchaisri T. A., Pirmez C., Chan J., Kaplan G., Young S. M., Weissman I. L., Bloom B. R., Rea T. H. Analysis of naturally occurring delayed-type hypersensitivity reactions in leprosy by in situ hybridization. J Exp Med. 1989 May 1;169(5):1565–1581. doi: 10.1084/jem.169.5.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duke R. C. Self recognition by T cells. I. Bystander killing of target cells bearing syngeneic MHC antigens. J Exp Med. 1989 Jul 1;170(1):59–71. doi: 10.1084/jem.170.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorman K., Liu C. C., Blakely A., Young J. D., Torbett B. E., Clark W. R. Cloned cytotoxic T lymphocytes as target cells. II. Polarity of lysis revisited. J Immunol. 1988 Oct 1;141(7):2211–2215. [PubMed] [Google Scholar]
  8. Goulmy E. Class-I-restricted human cytotoxic T lymphocytes directed against minor transplantation antigens and their possible role in organ transplantation. Prog Allergy. 1985;36:44–72. [PubMed] [Google Scholar]
  9. Goulmy E., Hamilton J. D., Bradley B. A. Anti-self HLA may be clonally expressed. J Exp Med. 1979 Feb 1;149(2):545–550. doi: 10.1084/jem.149.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hahn H., Kaufmann S. H. The role of cell-mediated immunity in bacterial infections. Rev Infect Dis. 1981 Nov-Dec;3(6):1221–1250. doi: 10.1093/clinids/3.6.1221. [DOI] [PubMed] [Google Scholar]
  11. Hancock G. E., Cohn Z. A., Kaplan G. The generation of antigen-specific, major histocompatibility complex-restricted cytotoxic T lymphocytes of the CD4+ phenotype. Enhancement by the cutaneous administration of interleukin 2. J Exp Med. 1989 Mar 1;169(3):909–919. doi: 10.1084/jem.169.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jiang S. B., Persechini P. M., Zychlinsky A., Liu C. C., Perussia B., Young J. D. Resistance of cytolytic lymphocytes to perforin-mediated killing. Lack of correlation with complement-associated homologous species restriction. J Exp Med. 1988 Dec 1;168(6):2207–2219. doi: 10.1084/jem.168.6.2207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaplan G., Kiessling R., Teklemariam S., Hancock G., Sheftel G., Job C. K., Converse P., Ottenhoff T. H., Becx-Bleumink M., Dietz M. The reconstitution of cell-mediated immunity in the cutaneous lesions of lepromatous leprosy by recombinant interleukin 2. J Exp Med. 1989 Mar 1;169(3):893–907. doi: 10.1084/jem.169.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaplan G., Laal S., Sheftel G., Nusrat A., Nath I., Mathur N. K., Mishra R. S., Cohn Z. A. The nature and kinetics of a delayed immune response to purified protein derivative of tuberculin in the skin of lepromatous leprosy patients. J Exp Med. 1988 Nov 1;168(5):1811–1824. doi: 10.1084/jem.168.5.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaufmann S. H. CD8+ T lymphocytes in intracellular microbial infections. Immunol Today. 1988 Jun;9(6):168–174. doi: 10.1016/0167-5699(88)91292-3. [DOI] [PubMed] [Google Scholar]
  16. Kranz D. M., Eisen H. N. Resistance of cytotoxic T lymphocytes to lysis by a clone of cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1987 May;84(10):3375–3379. doi: 10.1073/pnas.84.10.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lanzavecchia A. Is suppression a function of class II--restricted cytotoxic T cells? Immunol Today. 1989 May;10(5):157–159. doi: 10.1016/0167-5699(89)90172-2. [DOI] [PubMed] [Google Scholar]
  18. Liu C. C., Jiang S., Persechini P. M., Zychlinsky A., Kaufmann Y., Young J. D. Resistance of cytolytic lymphocytes to perforin-mediated killing. Induction of resistance correlates with increase in cytotoxicity. J Exp Med. 1989 Jun 1;169(6):2211–2225. doi: 10.1084/jem.169.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mustafa A. S., Qvigstad E. HLA-DR-restricted antigen-induced proliferation and cytotoxicity mediated by CD4+ T-cell clones from subjects vaccinated with killed M. leprae. Int J Lepr Other Mycobact Dis. 1989 Mar;57(1):1–11. [PubMed] [Google Scholar]
  20. Müller-Eberhard H. J. The molecular basis of target cell killing by human lymphocytes and of killer cell self-protection. Immunol Rev. 1988 Mar;103:87–98. doi: 10.1111/j.1600-065x.1988.tb00751.x. [DOI] [PubMed] [Google Scholar]
  21. Nagler-Anderson C., Verret C. R., Firmenich A. A., Berne M., Eisen H. N. Resistance of primary CD8+ cytotoxic T lymphocytes to lysis by cytotoxic granules from cloned T cell lines. J Immunol. 1988 Nov 15;141(10):3299–3305. [PubMed] [Google Scholar]
  22. Nathan C. F., Kaplan G., Levis W. R., Nusrat A., Witmer M. D., Sherwin S. A., Job C. K., Horowitz C. R., Steinman R. M., Cohn Z. A. Local and systemic effects of intradermal recombinant interferon-gamma in patients with lepromatous leprosy. N Engl J Med. 1986 Jul 3;315(1):6–15. doi: 10.1056/NEJM198607033150102. [DOI] [PubMed] [Google Scholar]
  23. Ottenhoff T. H., Ab B. K., Van Embden J. D., Thole J. E., Kiessling R. The recombinant 65-kD heat shock protein of Mycobacterium bovis Bacillus Calmette-Guerin/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J Exp Med. 1988 Nov 1;168(5):1947–1952. doi: 10.1084/jem.168.5.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ottenhoff T. H., Neuteboom S., Elferink D. G., de Vries R. R. Molecular localization and polymorphism of HLA class II restriction determinants defined by Mycobacterium leprae-reactive helper T cell clones from leprosy patients. J Exp Med. 1986 Dec 1;164(6):1923–1939. doi: 10.1084/jem.164.6.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peters P. J., Geuze H. J., van der Donk H. A., Borst J. A new model for lethal hit delivery by cytotoxic T lymphocytes. Immunol Today. 1990 Jan;11(1):28–32. doi: 10.1016/0167-5699(90)90008-w. [DOI] [PubMed] [Google Scholar]
  26. Roosnek E., Demotz S., Corradin G., Lanzavecchia A. Kinetics of MHC-antigen complex formation on antigen-presenting cells. J Immunol. 1988 Jun 15;140(12):4079–4082. [PubMed] [Google Scholar]
  27. Rotteveel F. T., Kokkelink I., van Lier R. A., Kuenen B., Meager A., Miedema F., Lucas C. J. Clonal analysis of functionally distinct human CD4+ T cell subsets. J Exp Med. 1988 Nov 1;168(5):1659–1673. doi: 10.1084/jem.168.5.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shinkai Y., Ishikawa H., Hattori M., Okumura K. Resistance of mouse cytolytic cells to pore-forming protein-mediated cytolysis. Eur J Immunol. 1988 Jan;18(1):29–33. doi: 10.1002/eji.1830180106. [DOI] [PubMed] [Google Scholar]
  29. Siliciano R. F., Lawton T., Knall C., Karr R. W., Berman P., Gregory T., Reinherz E. L. Analysis of host-virus interactions in AIDS with anti-gp120 T cell clones: effect of HIV sequence variation and a mechanism for CD4+ cell depletion. Cell. 1988 Aug 12;54(4):561–575. doi: 10.1016/0092-8674(88)90078-5. [DOI] [PubMed] [Google Scholar]
  30. Sinigaglia F., Guttinger M., Gillessen D., Doran D. M., Takacs B., Matile H., Trzeciak A., Pink J. R. Epitopes recognized by human T lymphocytes on malaria circumsporozoite protein. Eur J Immunol. 1988 Apr;18(4):633–636. doi: 10.1002/eji.1830180422. [DOI] [PubMed] [Google Scholar]
  31. Skinner M., Marbrook J. The most efficient cytotoxic T lymphocytes are the least susceptible to lysis. J Immunol. 1987 Aug 15;139(4):985–987. [PubMed] [Google Scholar]
  32. Sun D., Qin Y., Chluba J., Epplen J. T., Wekerle H. Suppression of experimentally induced autoimmune encephalomyelitis by cytolytic T-T cell interactions. Nature. 1988 Apr 28;332(6167):843–845. doi: 10.1038/332843a0. [DOI] [PubMed] [Google Scholar]
  33. Townsend A. R., Rothbard J., Gotch F. M., Bahadur G., Wraith D., McMichael A. J. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell. 1986 Mar 28;44(6):959–968. doi: 10.1016/0092-8674(86)90019-x. [DOI] [PubMed] [Google Scholar]
  34. Van Schooten W. C., Elferink D. G., Van Embden J., Anderson D. C., De Vries R. R. DR3-restricted T cells from different HLA-DR3-positive individuals recognize the same peptide (amino acids 2-12) of the mycobacterial 65-kDa heat-shock protein. Eur J Immunol. 1989 Nov;19(11):2075–2079. doi: 10.1002/eji.1830191116. [DOI] [PubMed] [Google Scholar]
  35. Van Schooten W. C., Ottenhoff T. H., Klatser P. R., Thole J., De Vries R. R., Kolk A. H. T cell epitopes on the 36K and 65K Mycobacterium leprae antigens defined by human T cell clones. Eur J Immunol. 1988 Jun;18(6):849–854. doi: 10.1002/eji.1830180604. [DOI] [PubMed] [Google Scholar]
  36. Verret C. R., Firmenich A. A., Kranz D. M., Eisen H. N. Resistance of cytotoxic T lymphocytes to the lytic effects of their toxic granules. J Exp Med. 1987 Nov 1;166(5):1536–1547. doi: 10.1084/jem.166.5.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Young J. D., Liu C. C. How do cytotoxic T lymphocytes avoid self-lysis? Immunol Today. 1988 Jan;9(1):14–15. doi: 10.1016/0167-5699(88)91349-7. [DOI] [PubMed] [Google Scholar]
  38. Young J. D., Liu C. C., Persechini P. M., Cohn Z. A. Perforin-dependent and -independent pathways of cytotoxicity mediated by lymphocytes. Immunol Rev. 1988 Mar;103:161–202. doi: 10.1111/j.1600-065x.1988.tb00755.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES