Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1990 Jun 1;171(6):1871–1882. doi: 10.1084/jem.171.6.1871

Deduced amino acid sequences of class 1 protein (PorA) from three strains of Neisseria meningitidis. Synthetic peptides define the epitopes responsible for serosubtype specificity

PMCID: PMC2187959  PMID: 1693651

Abstract

The previously determined nucleotide sequence of the porA gene, encoding the class 1 outer membrane protein of meningococcal strain MC50, has been used to clone and sequence the porA gene from two further strains with differing serosubtype specificities. Comparison of the predicted amino acid sequences of the three class 1 proteins revealed considerable structural homology with major variation confined to two discrete regions (VR1 and VR2). The high degree of structural homology between the sequences gave predicted secondary structures that were almost identical, with the variable domains located in hydrophilic regions that are likely to be surface located and hence accessible to antibody binding. The predicted amino acid sequences have been used to define the epitopes recognized by mAbs with serosubtype specificity. A series of overlapping decapeptides spanning each of the class 1 protein sequences have been synthesized on solid-phase supports and probed with mAbs. Antibodies with P1.16 and P1.15 subtype specificity reacted with sequences in the VR2 domain, while antibodies with P1.7 subtype specificity reacted with sequences in the VR1 domain. Further peptides have been constructed to define the minimum epitopes recognized by each antibody. Thus we have been able to define linear peptides on each class 1 protein molecule that are responsible for subtype specificity and that represent targets for a protective immune response.

Full Text

The Full Text of this article is available as a PDF (917.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdillahi H., Poolman J. T. Neisseria meningitidis group B serosubtyping using monoclonal antibodies in whole-cell ELISA. Microb Pathog. 1988 Jan;4(1):27–32. doi: 10.1016/0882-4010(88)90045-9. [DOI] [PubMed] [Google Scholar]
  2. Barlow A. K., Heckels J. E., Clarke I. N. Molecular cloning and expression of Neisseria meningitidis class 1 outer membrane protein in Escherichia coli K-12. Infect Immun. 1987 Nov;55(11):2734–2740. doi: 10.1128/iai.55.11.2734-2740.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlow A. K., Heckels J. E., Clarke I. N. The class 1 outer membrane protein of Neisseria meningitidis: gene sequence and structural and immunological similarities to gonococcal porins. Mol Microbiol. 1989 Feb;3(2):131–139. doi: 10.1111/j.1365-2958.1989.tb01802.x. [DOI] [PubMed] [Google Scholar]
  4. Carbonetti N. H., Sparling P. F. Molecular cloning and characterization of the structural gene for protein I, the major outer membrane protein of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9084–9088. doi: 10.1073/pnas.84.24.9084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frasch C. E. Status of a group B Neisseria meningitidis vaccine. Eur J Clin Microbiol. 1985 Dec;4(6):533–536. doi: 10.1007/BF02013388. [DOI] [PubMed] [Google Scholar]
  6. Frasch C. E., Tsai C. M., Mocca L. F. Outer membrane proteins of Neisseria meningitidis: structure and importance in meningococcal disease. Clin Invest Med. 1986;9(2):101–107. [PubMed] [Google Scholar]
  7. Frasch C. E., Zollinger W. D., Poolman J. T. Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis. 1985 Jul-Aug;7(4):504–510. doi: 10.1093/clinids/7.4.504. [DOI] [PubMed] [Google Scholar]
  8. Frasch C. E., Zollinger W. D., Poolman J. T. Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis. 1985 Jul-Aug;7(4):504–510. doi: 10.1093/clinids/7.4.504. [DOI] [PubMed] [Google Scholar]
  9. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. Strategies for epitope analysis using peptide synthesis. J Immunol Methods. 1987 Sep 24;102(2):259–274. doi: 10.1016/0022-1759(87)90085-8. [DOI] [PubMed] [Google Scholar]
  11. Gotschlich E. C., Seiff M. E., Blake M. S., Koomey M. Porin protein of Neisseria gonorrhoeae: cloning and gene structure. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8135–8139. doi: 10.1073/pnas.84.22.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hitchcock P. J. Unified nomenclature for pathogenic Neisseria species. Clin Microbiol Rev. 1989 Apr;2 (Suppl):S64–S65. doi: 10.1128/cmr.2.suppl.s64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  14. Mandrell R. E., Zollinger W. D. Human immune response to meningococcal outer membrane protein epitopes after natural infection or vaccination. Infect Immun. 1989 May;57(5):1590–1598. doi: 10.1128/iai.57.5.1590-1598.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saukkonen K., Abdillahi H., Poolman J. T., Leinonen M. Protective efficacy of monoclonal antibodies to class 1 and class 3 outer membrane proteins of Neisseria meningitidis B:15:P1.16 in infant rat infection model: new prospects for vaccine development. Microb Pathog. 1987 Oct;3(4):261–267. doi: 10.1016/0882-4010(87)90059-3. [DOI] [PubMed] [Google Scholar]
  16. Saukkonen K., Leinonen M., Abdillahi H., Poolman J. T. Comparative evaluation of potential components for group B meningococcal vaccine by passive protection in the infant rat and in vitro bactericidal assay. Vaccine. 1989 Aug;7(4):325–328. doi: 10.1016/0264-410x(89)90194-1. [DOI] [PubMed] [Google Scholar]
  17. Tinsley C. R., Heckels J. E. Variation in the expression of pili and outer membrane protein by Neisseria meningitidis during the course of meningococcal infection. J Gen Microbiol. 1986 Sep;132(9):2483–2490. doi: 10.1099/00221287-132-9-2483. [DOI] [PubMed] [Google Scholar]
  18. Tsai C. M., Frasch C. E., Mocca L. F. Five structural classes of major outer membrane proteins in Neisseria meningitidis. J Bacteriol. 1981 Apr;146(1):69–78. doi: 10.1128/jb.146.1.69-78.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Virji M., Heckels J. E. Location of a blocking epitope on outer-membrane protein III of Neisseria gonorrhoeae by synthetic peptide analysis. J Gen Microbiol. 1989 Jul;135(7):1895–1899. doi: 10.1099/00221287-135-7-1895. [DOI] [PubMed] [Google Scholar]
  20. Vogel H., Jähnig F. Models for the structure of outer-membrane proteins of Escherichia coli derived from raman spectroscopy and prediction methods. J Mol Biol. 1986 Jul 20;190(2):191–199. doi: 10.1016/0022-2836(86)90292-5. [DOI] [PubMed] [Google Scholar]
  21. Wedege E., Frøholm L. O. Human antibody response to a group B serotype 2a meningococcal vaccine determined by immunoblotting. Infect Immun. 1986 Feb;51(2):571–578. doi: 10.1128/iai.51.2.571-578.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. West S. E., Clark V. L. Genetic loci and linkage associations in Neisseria gonorrhoeae and Neisseria meningitidis. Clin Microbiol Rev. 1989 Apr;2 (Suppl):S92–103. doi: 10.1128/cmr.2.suppl.s92. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES