Abstract
The lymphocytic choriomeningitis virus (LCMV) isolates Docile (D) and Aggressive (A) of Pfau et al. were studied in various strains of mice. Disease susceptibility, assessed as mortality and time to death to LCMV- D or -A varied greatly amongst mouse strains, and all four possible susceptibility patterns were observed: susceptibility to both (e.g. SWR/J), resistance to both (e.g. DBA/2), susceptibility to A but resistance to D (C57BL/6), or vice versa (CBA/J). Irrespective of the virus isolate or the mouse strain tested, susceptibility correlated with both early and high cytotoxic T cell activity found in spleens or leptomeningeal infiltrates, and with early and high primary footpad swelling reaction after local infection. C57BL/6 mice infected with A or SWR/J infected with A or with D showed, in both test systems, early and high activities; in contrast, DBA/2 mice infected with either D or A, and C57BL/6 infected with D showed no or only slow and low responses in both tests. Early and high LCMV-specific cytotoxic T cell activity, and the rapidity and extent of the primary footpad reaction directly correlated with susceptibility to LCM and all were dominantly regulated by H-2D.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed R., Byrne J. A., Oldstone M. B. Virus specificity of cytotoxic T lymphocytes generated during acute lymphocytic choriomeningitis virus infection: role of the H-2 region in determining cross-reactivity for different lymphocytic choriomeningitis virus strains. J Virol. 1984 Jul;51(1):34–41. doi: 10.1128/jvi.51.1.34-41.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmed R., Salmi A., Butler L. D., Chiller J. M., Oldstone M. B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J Exp Med. 1984 Aug 1;160(2):521–540. doi: 10.1084/jem.160.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allan J. E., Doherty P. C. Consequences of a single Ir-gene defect for the pathogenesis of lymphocytic choriomeningitis. Immunogenetics. 1985;21(6):581–589. doi: 10.1007/BF00395882. [DOI] [PubMed] [Google Scholar]
- Allan J. E., Doherty P. C. Immune T cells can protect or induce fatal neurological disease in murine lymphocytic choriomeningitis. Cell Immunol. 1985 Feb;90(2):401–407. doi: 10.1016/0008-8749(85)90204-7. [DOI] [PubMed] [Google Scholar]
- Biddison W. E., Ward F. E., Shearer G. M., Shaw S. The self determinants recognized by human virus-immune T cells can be distinguished from the serologically defined HLA antigens. J Immunol. 1980 Feb;124(2):548–552. [PubMed] [Google Scholar]
- Buchmeier M. J., Welsh R. M., Dutko F. J., Oldstone M. B. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275–331. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
- Byrne J. A., Ahmed R., Oldstone M. B. Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus. I. Generation and recognition of virus strains and H-2b mutants. J Immunol. 1984 Jul;133(1):433–439. [PubMed] [Google Scholar]
- Camenga D. L., Walker D. H., Murphy F. A. Anticonvulsant prolongation of survival in adult murine lymphocytic choriomeningitis. I. Drug treatment and virologic studies. J Neuropathol Exp Neurol. 1977 Jan;36(1):9–20. doi: 10.1097/00005072-197701000-00003. [DOI] [PubMed] [Google Scholar]
- Carp R. I., Davidson A. L., Merz P. A. A method for obtaining cerebrospinal fluid from mice. Res Vet Sci. 1971 Sep;12(5):499–499. [PubMed] [Google Scholar]
- Cerottini J. C., Brunner K. T. Cell-mediated cytotoxicity, allograft rejection, and tumor immunity. Adv Immunol. 1974;18:67–132. doi: 10.1016/s0065-2776(08)60308-9. [DOI] [PubMed] [Google Scholar]
- Cole G. A., Nathanson N., Prendergast R. A. Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature. 1972 Aug 11;238(5363):335–337. doi: 10.1038/238335a0. [DOI] [PubMed] [Google Scholar]
- Doherty P. C., Dunlop M. B., Parish C. R., Zinkernagel R. M. Inflammatory process in murine lymphocytic choriomeningitis is maximal in H-2K or H-2D compatible interactions. J Immunol. 1976 Jul;117(1):187–190. [PubMed] [Google Scholar]
- Ertl H. C. Adoptive transfer of delayed-type hypersensitivity to Sendai virus. III. Effect of H-2 mutations on recognition by K, D-region restricted T effector lymphocytes. Immunogenetics. 1981 Mar 1;12(5-6):579–586. doi: 10.1007/BF01561698. [DOI] [PubMed] [Google Scholar]
- Friedman R. M., Vogel S. N. Interferons with special emphasis on the immune system. Adv Immunol. 1983;34:97–140. doi: 10.1016/s0065-2776(08)60378-8. [DOI] [PubMed] [Google Scholar]
- HOTCHIN J. The biology of lymphocytic choriomeningitis infection: virus-induced immune disease. Cold Spring Harb Symp Quant Biol. 1962;27:479–499. doi: 10.1101/sqb.1962.027.001.046. [DOI] [PubMed] [Google Scholar]
- HOTCHIN J. The foot pad reaction of mice to lymphocytic choriomeningitis virus. Virology. 1962 May;17:214–216. doi: 10.1016/0042-6822(62)90106-x. [DOI] [PubMed] [Google Scholar]
- Jacobson S., Pfau C. J. Viral pathogenesis and resistance to defective interfering particles. Nature. 1980 Jan 17;283(5744):311–313. doi: 10.1038/283311a0. [DOI] [PubMed] [Google Scholar]
- Kees U., Kaltmann B., Marcucci F., Hültner L., Staber F., Krammer P. H. Frequency and activity of immune interferon (IFN-gamma)- and colony-stimulating factor-producing human peripheral blood T lymphocytes. Eur J Immunol. 1984 Apr;14(4):368–373. doi: 10.1002/eji.1830140417. [DOI] [PubMed] [Google Scholar]
- Klein J., Figueroa F., David C. S. H-2 haplotypes, genes and antigens: second listing. II. The H-2 complex. Immunogenetics. 1983;17(6):553–596. doi: 10.1007/BF00366126. [DOI] [PubMed] [Google Scholar]
- Lehmann-Grube F., Assmann U., Löliger C., Moskophidis D., Löhler J. Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in the clearance of lymphocytic choriomeningitis virus from spleens of mice. J Immunol. 1985 Jan;134(1):608–615. [PubMed] [Google Scholar]
- Lehmann-Grube F., Cihak J., Varho M., Tijerina R. The immune response of the mouse to lymphocytic choriomeningitis virus. II. Active suppression of cell-mediated immunity by infection with high virus doses. J Gen Virol. 1982 Feb;58(Pt 2):223–235. doi: 10.1099/0022-1317-58-2-223. [DOI] [PubMed] [Google Scholar]
- Marker O., Nielsen M. H., Diemer N. H. The permeability of the blood-brain barrier in mice suffering from fatal lymphocytic choriomeningitis virus infection. Acta Neuropathol. 1984;63(3):229–239. doi: 10.1007/BF00685249. [DOI] [PubMed] [Google Scholar]
- Morris A. G., Lin Y. L., Askonas B. A. Immune interferon release when a cloned cytotoxic T-cell line meets its correct influenza-infected target cell. Nature. 1982 Jan 14;295(5845):150–152. doi: 10.1038/295150a0. [DOI] [PubMed] [Google Scholar]
- Moskophidis D., Lehmann-Grube F. The immune response of the mouse to lymphocytic choriomeningitis virus. III. Differences of numbers of cytotoxic T lymphocytes in spleens of mice of different strains. Cell Immunol. 1983 Apr 15;77(2):279–289. doi: 10.1016/0008-8749(83)90028-x. [DOI] [PubMed] [Google Scholar]
- Neustadt P. M., Cody T. S., Monjan A. A. Failure to find H-2-associated susceptibility to LCM disease. J Immunogenet. 1978 Dec;5(6):397–400. doi: 10.1111/j.1744-313x.1978.tb00668.x. [DOI] [PubMed] [Google Scholar]
- Oldstone M. B., Dixon F. J., Mitchell G. F., McDevitt H. O. Histocompatibility-linked genetic control of disease susceptibility. Murine lymphocytic choriomeningitis virus infection. J Exp Med. 1973 May 1;137(5):1201–1212. doi: 10.1084/jem.137.5.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oldstone M. B. Relationship between major histocompatibility antigens and disease. Possible associations with human arenavirus diseases. Bull World Health Organ. 1975;52(4-6):479–486. [PMC free article] [PubMed] [Google Scholar]
- Pfau C. J., Gresser I., Hunt K. D. Lethal role of interferon in lymphocytic choriomeningitis virus-induced encephalitis. J Gen Virol. 1983 Aug;64(Pt 8):1827–1830. doi: 10.1099/0022-1317-64-8-1827. [DOI] [PubMed] [Google Scholar]
- Pfau C. J., Valenti J. K., Jacobson S., Pevear D. C. Cytotoxic T cells are induced in mice infected with lymphocytic choriomeningitis virus strains of markedly different pathogenicities. Infect Immun. 1982 May;36(2):598–602. doi: 10.1128/iai.36.2.598-602.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfau C. J., Valenti J. K., Pevear D. C., Hunt K. D. Lymphocytic choriomeningitis virus killer T cells are lethal only in weakly disseminated murine infections. J Exp Med. 1982 Jul 1;156(1):79–89. doi: 10.1084/jem.156.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rivière Y., Gresser I., Guillon J. C., Bandu M. T., Ronco P., Morel-Maroger L., Verroust P. Severity of lymphocytic choriomeningitis virus disease in different strains of suckling mice correlates with increasing amounts of endogenous interferon. J Exp Med. 1980 Sep 1;152(3):633–640. doi: 10.1084/jem.152.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwendemann G., Löhler J., Lehmann-Grube F. Evidence for cytotoxic T-lymphocyte-target cell interaction in brains of mice infected intracerebrally with lymphocytic choriomeningitis virus. Acta Neuropathol. 1983;61(3-4):183–195. doi: 10.1007/BF00691984. [DOI] [PubMed] [Google Scholar]
- Thomsen A. R., Bro-Jørgensen K., Volkert M. Fatal meningitis following lymphocytic choriomeningitis virus infection reflects delayed-type hypersensitivity rather than cytotoxicity. Scand J Immunol. 1983 Feb;17(2):139–145. doi: 10.1111/j.1365-3083.1983.tb00776.x. [DOI] [PubMed] [Google Scholar]
- Thomsen A. R., Volkert M., Marker O. The timing of the immune response in relation to virus growth determines the outcome of the LCM infection. Acta Pathol Microbiol Scand C. 1979 Feb;87C(1):47–54. [PubMed] [Google Scholar]
- Tosolini F. A., Mims C. A. Effect of murine strain and viral strain on the pathogenesis of lymphocytic choriomeningitis infection and a study of footpad responses. J Infect Dis. 1971 Feb;123(2):134–144. doi: 10.1093/infdis/123.2.134. [DOI] [PubMed] [Google Scholar]
- Whitmore A. C., Whitmore S. P. Subline divergence within L.C. Strong's C3H and CBA inbred mouse strains. A review. Immunogenetics. 1985;21(5):407–428. doi: 10.1007/BF00430926. [DOI] [PubMed] [Google Scholar]
- Wiktor T. J., Koprowski H. Monoclonal antibodies against rabies virus produced by somatic cell hybridization: detection of antigenic variants. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3938–3942. doi: 10.1073/pnas.75.8.3938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M., Doherty P. C. Cytotoxic thymus-derived lymphocytes in cerebrospinal fluid of mice with lymphocytic choriomeningitis. J Exp Med. 1973 Nov 1;138(5):1266–1269. doi: 10.1084/jem.138.5.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M., Dunlop M. B., Blanden R. V., Doherty P. C., Shreffler D. C. H-2 compatibility requirement for virus-specific T-cell-mediated cytolysis. Evaluation of the role of H-2I region and non-H-2 genes in regulating immune response. J Exp Med. 1976 Aug 1;144(2):519–532. doi: 10.1084/jem.144.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M. H-2 compatibility requirement for virus-specific T-cell-mediated cytolysis. The H-2K structure involved is coded by a single cistron defined by H-2Kb mutant mice. J Exp Med. 1976 Feb 1;143(2):437–443. doi: 10.1084/jem.143.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M. H-2 restriction of virus-specific T-cell-mediated effector functions in vivo. II. Adoptive transfer of delayed-type hypersensitivity to murine lymphocytic choriomeningits virus is restriced by the K and D region of H-2. J Exp Med. 1976 Sep 1;144(3):776–787. doi: 10.1084/jem.144.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zinkernagel R. M., Pfau C. J., Hengartner H., Althage A. Susceptibility to murine lymphocytic choriomeningitis maps to class I MHC genes--a model for MHC/disease associations. 1985 Aug 29-Sep 4Nature. 316(6031):814–817. doi: 10.1038/316814a0. [DOI] [PubMed] [Google Scholar]
